
COMMAND LINE CHEAT SHEET
presented by Tower - the best Git client for Mac and Windows

30-day free trial available at
www.git-tower.com

DIRECTORIES

Display path of current working directory
$ pwd

Change directory to <directory>
$ cd <directory>

FILES

Delete <file>
$ rm <file>

Delete <directory>

$ rm -r <directory>

SEARCH

OUTPUT

Output the contents of <file>
$ cat <file>

Output the contents of <file> using
the less command (which supports
pagination etc.)
$ less <file>

Navigate to parent directory
$ cd ..

List directory contents
$ ls

Find all files named <file> inside <dir>
(use wildcards [*] to search for parts of
filenames, e.g. "file.*")
$ find <dir> -name "<file>"

Output all occurrences of <text> inside
<file> (add -i for case-insensitivity)
$ grep "<text>" <file>

Search for all files containing <text>
inside <dir>
$ grep -rl "<text>" <dir>

Output whois information for <domain>
$ whois <domain>

Download <file> (via HTTP[S] or FTP)
$ curl -O <url/to/file>

Quit process with ID <pid>
$ kill <pid>

Display live information about currently
running processes
$ top

Establish an SSH connection to <host>
with user <username>
$ ssh <username>@<host>

Copy <file> to a remote <host>
$ scp <file>
<user>@<host>:/remote/path

Create new directory named <directory>
$ mkdir <directory>

Output the first 10 lines of <file>
$ head <file>

Direct the output of <cmd> into <file>
$ <cmd> > <file>

Append the output of <cmd> to <file>
$ <cmd> >> <file>

Direct the output of <cmd1> to <cmd2>
$ <cmd1> | <cmd2>

Clear the command line window
$ clear

List detailed directory contents, including
hidden files
$ ls -la

Force-delete <file> (add -r to force-delete
a directory)
$ rm -f <file>

Rename <file-old> to <file-new>
$ mv <file-old> <file-new>

Move <file> to <directory> (possibly
overwriting an existing file)

$ mv <file> <directory>

Copy <file> to <directory> (possibly
overwriting an existing file)

$ cp <file> <directory>

NETWORK

Ping <host> and display status
$ ping <host>

PROCESSES

Output currently running processes
$ ps ax

PERMISSIONS

Change permissions of <file> to 755
$ chmod 755 <file>

Change ownership of <file> to <user> and
<group> (add -R to include a directory’s
contents)
$ chown <user>:<group> <file>

Change permissions of <directory> (and
its contents) to 600
$ chmod -R 600 <directory>

Update file access & modification time
(and create <file> if it doesn’t exist)
$ touch <file>

Copy <directory1> and its contents to
<directory2> (possibly overwriting files
in an existing directory)
$ cp -r <directory1> <directory2>

30-day free trial available at
www.git-tower.com

COMMAND LINE CHEAT SHEET
presented by Tower - the best Git client for Mac and Windows

- access/read (r)
- modify/write (w)
- execute (x)

4
2
1

GETTING HELP

On the command line, help is always at
hand: you can either type man <command>
or <command> --help to receive detailed
documentation about the command in
question.

FILE PERMISSIONS

On Unix systems, file permissions are set
using three digits: the first one representing
the permissions for the owning user, the
second one for its group, and the third one
for anyone else.

Add up the desired access rights for each
digit as following:

For example, 755 means “rwx” for owner
and “rx” for both group and anyone. 740
represents “rwx” for owner, “r” for group
and no rights for other users.

COMBINING COMMANDS

If you plan to run a series of commands
after another, it might be useful to combine
them instead of waiting for each command
to finish before typing the next one. To do
so, simply separate the commands with a
semicolon (;) on the same line.
Additionally, it is possible to execute a
command only if its predecessor produces
a certain result. Code placed after the &&
operator will only be run if the previous
command completes successfully, while
the opposite || operator only continues if
the previous command fails. The following
command will create the folder “videos”
only if the cd command fails (and the fol-
der therefore doesn’t exist):
$ cd ~/videos || mkdir ~/videos

THE “CTRL” KEY

Various keyboard shortcuts can assist you
when entering text: Hitting CTRL+A moves
the caret to the beginning and CTRL+E
to the end of the line. In a similar fashion,
CTRL+K deletes all characters after and
CTRL+U all characters in front of the caret.
Pressing CTRL+L clears the screen (simi-
larly to the clear command). If you should
ever want to abort a running command,
CTRL+C will cancel it.

THE “TAB” KEY

Whenever entering paths and file names,
the TAB key comes in very handy. It auto-
completes what you’ve written, reducing
typos quite efficiently. E.g. when you want
to switch to a different directory, you can
either type every component of the path
by hand:
$ cd ~/projects/acmedesign/docs/
…or use the TAB key (try this yourself):
$ cd ~/pr[TAB]ojects/
ac[TAB]medesign/d[TAB]ocs/
In case your typed characters are ambigu-
ous (because “ac” could point to the “ac-
medesign” or the “actionscript” folder), the
command line won’t be able to autocom-
plete. In that case, you can hit TAB twice
to view all possible matches and then type
a few more characters.

THE ARROW KEYS

The command line keeps a history of the
most recent commands you executed. By
pressing the ARROW UP key, you can step
through the last called commands (starting
with the most recent). ARROW DOWN will
move forward in history towards the most
recent call.
Bonus tip: Calling the history command
prints a list of all recent commands.

HOME FOLDER

File and directory paths can get long and
awkward. If you’re addressing a path inside
of your home folder though, you can make
things easier by using the ~ character. So
instead of writing cd /Users/your-username/
projects/ , a simple cd ~/projects/ will do.
And in case you should forget your user
name, whoami will remind you.

OUTPUT WITH “LESS”

The less command can display and pagi-
nate output. This means that it only displays
one page full of content and then waits for
your explicit instructions. You’ll know you
have less in front of you if the last line of
your screen either shows the file’s name or
just a colon (:) . Apart from the arrow keys,
hitting SPACE will scroll one page forward,
b will scroll one page backward, and q
will quit the less program.

DIRECTING OUTPUT

The output of a command does not
necessarily have to be printed to the
command line. Instead, you can decide to
direct it to somewhere else. Using the >
operator, for example, output can be direc-
ted to a file. The following command will
save the running processes to a text file in
your home folder:
$ ps ax > ~/processes.txt
It is also possible to pass output to another
command using the | (pipe) operator,
which makes it very easy to create complex
operations. E.g., this chain of commands
will list the current directory’s contents,
search the list for PDF files and display the
results with the less command:
$ ls | grep ".pdf" | less

