) Conception & Développement Informatique

Acces aux Bases et Compétences

5 4 Centre de
ion
Rea a Ptat O Apprentissage
de Mulhouse
ALGORITHME : INTRODUCTION
Sommaire

Présentation générale du développement d’Un IOZICIEl.......cccuiiiiiiiiiiiiiiie e e 1
[F= oY1 o o 1T USSP 1
[l oo e F-Y - RSP 1
DEfINItioN de I"alGOMItNIME . e e e e e e e st e e e e e e e s bt aeeeeeessnsbaeeaesesnansreeeas 2
Double problématique de I'algoritNMIQUEocii it e e e e e e e ebba e e e e e e e nraaeeas 2
Différences entre « Algorithme » et « ProgrammMeE » ...cciiiicciiiiii i e e e e e e e e e e araeee s 2
Représentation et Structures algorithmMiQUEScoo i i e e e e e e e e aaaaaaaeas 3
LU To AU =N [T =T Y[SRR 3
SEIUCTUTES QIEEINATIVES ...eeeieiiiee ettt et ettt e s sttt e s sttt e e st et e s sabbeesaabaeeessbaaeesabbaessabbeeesabaaesssseessssens 4
STrUCTUTE SLLALORS...SINON ... cott ittt e et e e e et et e e e e eab s e e e aasaseeeaeba e aeaesansaeanesanseeeeesannaes 4
SErUCTUres FEPETLITIVES (OU ITEIATIVES) ...iii i eiiiieee ettt e e e et e e e e e ettt e e e e e s e aabeeeeeseaanssaeeeeeeassraeeeananns 5
SErUCTUTE FAIRE..JUSQU'Aouiiiieiieiiietstseteiete sttt sttt sttt s st se et s et st snsesns 5
STructure TANT QUEL.LFAIRE ...ttt ettt ettt ettt ettt et e e e eeaaaaaaaeeeaesasssaaaaannnnnnnsnnsnneeeaes 5
SEUCTUNE POUR..LFAIRE. ...ttt ettt et ettt e e e e e e e e e e e e bbbt e ettt ee et e eeeeaaaeaaaaeesassaaaaannnnnssnnennsennnnnes 6
Choix d’un 1angage de ProgrammMaAtioNeiiiiiiciiieiee e et e e escre e e e e e stre e e e e e e esaereeeeeeesaasaeeeeeeasssbeeeeseanssssneeeannns 6

MD v1.0.1 02/01/2019

/«""fc;,.m g Algorithme : Introduction | Page 1
Réadaptation

de Mulhouse

Présentation générale du développement d’un logiciel

Vous voila face a votre client et a son probleme.

La premiére étape consiste a vous mettre d'accord avec le client sur le travail a fournir. Il est notoire qu'une fois le
probléme bien compris, un pas décisif vers la solution est fait dans la mesure ou il existe une solution informatique
au probléme posé.

Cette phase est I'analyse fonctionnelle.

L’étape suivante consiste a concevoir |'application. Cela veut dire modéliser |'application, la décomposer de maniére
descendante, proposer une (des) solution(s) et les moyens a mettre en ceuvre.
Cette phase est la conception préliminaire.

La phase suivante est celle qui nous intéresse ici : la conception détaillée.
Il s’agit de présenter de maniere détaillée les éléments de la solution choisie.

A ce stade du développement, le futur logiciel est architecturé en plusieurs unités de traitement (les composants)
réalisant les fonctions a implémenter. Le traitement de chaque composant sera modélisé par un algorithme.

Pour cela il existe plusieurs formalismes:
- Graphiques :Organigrammes
- Textuels : Pseudo-code (Langage de description d'algorithme).

L’algorithme

L'algorithme s’élabore en se centrant sur la nature du travail. C'est-a-dire sans souci des spécificités dues a la
machine ou au langage de programmation.

L’algorithme représente les opérations réalisées.

Une fois I'algorithme terminé, il reste la phase de réalisation (codage) au cours de laquelle les algorithmes sont
transcrits dans le langage de programmation retenu (C#, Java, PHP, etc..).

La traduction de cet algorithme en un programme se fait de maniere quasiment automatique, sauf pour les points
faisant appel aux spécificités de la machine ou du langage de programmation utilisé.

Ainsi |'algorithme a permis de traiter séparément les problémes dus a la conception du produit de ceux dus a son
implémentation. C'est pourquoi l'algorithmique est une étape indispensable a la réalisation d'applications
informatiques.

Le codage

En observant les mémes regles dans la programmation que dans |'algorithme, le programmeur aboutit a une
application conviviale et maintenable (c'est a dire compréhensible et modifiable par une tierce personne) a condition
qgue les documents des phases antérieures soient complets.

Puis chaque composant est vérifié a I'aide des tests unitaires a partir d'un jeu d'essai (données sur lesquelles sont
effectués les tests et qui permettent de couvrir tous les cas traités).

Apres le constat du bon fonctionnement de chaque composant, il est procédé aux tests d'intégration ou tests
d'ensemble.

Centre de

— Réadaptation Algorithme : Introduction | Page 1

[]
///_//_;/im de Algorithme : Introduction | Page 2
Réadaptation

de Mulhouse

Définition de |'algorithme

Algorithme : Suite finie d’opérations élémentaires constituant un schéma de calcul ou de résolution d’un
probleme.

Algorigramme : Traduction graphique de 'algorithme. Egalement appelé Ordinogramme ou Organigramme.

Syntaxe : Regles d’écriture d’un langage donné.

Un algorithme est une suite de regles a appliquer dans un ordre déterminé a un nombre fini de données pour
arriver, en un nombre fini d'étapes, a un certain résultat, et cela indépendamment des données.

Double problématique de I'algorithmique

1) Trouver une méthode de résolution (du probléme a traiter)
2) Trouver une méthode efficace.

Savoir résoudre un probléme est une chose, le résoudre efficacement en est une autre. La suite du parcours vous
permettra de vous en rendre compte.

Différences entre « Algorithme » et « programme »

Un programme est la réalisation (I'implémentation) d’un algorithme au moyen d’un langage donné (sur une
architecture donnée). Il s’agit de la mise en ceuvre du principe.

Par exemple, lors de la programmation, on s’occupera par exemple de la gestion de la mémoire et de la persistance
des données qui sont tous deux des problemes d’implémentation ignorés au niveau algorithmique.

c 7INL [Réadspiation Algorithme : Introduction | Page 2

y

, 7 Centre de
Réadaptation

de Mulhouse

Algorithme : Introduction | Page 3

Représentation et Structures algorithmiques

Un algorithme est composé d'un ensemble de structures ordonnant a un processeur de réaliser dans un ordre précis
un nombre de taches élémentaires dans le but de résoudre un probleme technique donné.

Un algorithme peut étre décrit sous forme graphique (Algorigramme ou Organigramme) ou sous forme littérale
(notation algorithmique, pseudo code).

Pseudo code Organigramme

Structure linéaire

On exécute successivement une suite d'action dans I'ordre de leur énoncé.

Algorigramme Notation algorithmique
[Début] Début
Action 1
l Action 2
Action 1 Fin
I
Action 2

=)

[)
/- Sptatio Algorithme : Introduction | Page 3

iz e READApPTATioN
de Mulhouse

///z__//

i Centre de
Réadaptation

de Mulhouse

Algorithme : Introduction | Page 4

Structures alternatives

Structure SI...ALORS...SINON...

Cette structure offre le choix entre deux séquences s'excluant mutuellement.

Algorigramme

fausse

condition

Notation algorithmique

Si condition Alors
Séquence A
Sinon
Séquence B
Fin Si

Exemple de Code

Séquence A

Séquence B

F 3

if (condition)
{

Séquence A;

}

else

{

Séquence B;

}

Remarque :

La structure peut se limiter a SI...ALORS, si la condition est vrai on exécute la séquence A si elle est fausse on quitte la

structure sans exécuter de séquence.

condition

F Y

oo

/\. 7 Centre de
e s Réadaptation
de Mulhouse

Notation algorithmique

Si condition Alors
Séquence A
Fin Si

Exemple de Code

if (condition)
{

Séquence A ;

}

Algorithme : Introduction | Page 4

[]
///_E/// Algorithme : Introduction | Page 5

i Centre de
Réadaptation

de Mulhouse

Structures répétitives (ou itératives)

Structure FAIRE...JUSQU'A

La séquence est exécutée au moins une fois, elle est répétée tant que la condition est vraie.

Algorigramme La traduction en algorithme peut se faire de 2 facons
Faire Faire
- Séquence Séquence
Tant Que Jusqu’a
. (condition vraie) (condition fausse)
Sequence

Exemple de Code

fouzse do

{

Séquence ;

vraie

}

while (condition vraie)

Structure TANT QUE...FAIRE

On teste d'abord la condition. La séquence est exécutée tant que la condition est vraie.

Algorigramme Traduction en algorithme

Tant que (condition vraie)

-
L ad

Séquence
Fin Tant que
Condition fausse
Exemple de Code
WPl E
while (condition vraie)
Séquence {

| Séquence;

o0 #
A ,/[-/J Centre de Algorithme : Introduction | Page 5

! Réadaptation
de Mulhouse

Y centre de Algorithme : Introduction | Page 6
Réadaptation

de Mulhouse

Structure POUR...FAIRE

On connait le nombre d'itérations a réaliser.

Algorigramme Traduction en algorithme

Pouri=0aN
Faire Séquence
Fin Pour

Exemple de Code

fausse
intN=10;

Yraie
for(inti=0;i<=N; i++)

{

Séquence
[}

=i+l

Séquence;

Choix d’un langage de programmation

Avant de se demander quel langage utiliser pour réaliser telle application , il faut se poser la question « comment
vais-je résoudre mon probleme algorithmique ».

La difficulté premiére est d’élaborer le bon algorithme pour résoudre un probleme : cela demande de la recherche,
beaucoup de réflexion et ce d’autant plus que le probléme a résoudre est complexe.

Une fois I'algorithme mis en place, on peut passer a la phase « codage », c'est-a-dire a la phase de traduction dans
un langage donné : C, C++, C#, Java, PHP... Cela ne présente pas de difficulté majeure si ce n’est la connaissance de la
syntaxe des différents langages (Une fois que vous connaissez un langage dérivé du C, aprrendre un autre dérivé du
C prend peu de temps).

Un bon programmeur est avant tout un bon algorithmicien qui saura ensuite exploiter au mieux tel ou tel langage de
programmation pour réaliser le programme demandé.

Le php ou le C# ASP.NET sont particulierement pratique pour le développement d’applications sur internet car ils
disposent d’une bibliotheque de ressources importantes. Java et C# sont un bon choix pour les applications de
bureau et mobile. Les langages plus bas niveau (dont la syntaxe s’approche du langage machine) sera réservé aux
applications dont les performances et la réactivité sont les critéres principaux. De plus, il existe des langages destinés
a des contextes et domaines trés ciblés (recherche scientifique, recherche et développement, cryptographie...).

Le choix du langage de programmation se fera donc en fonction de criteres pratiques : facilité de codage
(bibliotheque d’instructions prédéfinies), rapidité d’exécution, disponibilité du langage pour le processeur ou le
serveur ou encore affinités des équipes de développeurs avec tel ou tel outil.

--- FIN DU DOCUMENT ---
http://www.arfp.asso.fr

7[]
é Ll Réa’é{f;"tf{;;‘i’;n Algorithme : Introduction | Page 6

http://www.arfp.asso.fr/
http://www.arfp.asso.fr/

