) Conception & Développement Informatique

Acces aux Bases et Compétences

5 4 Centre de
]
Réadaptation
a O Apprentissage
de Mulhouse
ALGORITHME : PSEUDO-CODE &
Sommaire
DL T oY huTo] g Ie [VIRCH 22U e [0 3 oo [I0 0 SRR 1
Exemple #1 : Calcul d'intérét et de ValeUr QCOUISEceiiiiiiiiiiie ettt e e e e e erae e e e e e e abae e e e e e eenraeeeas 1
1V 1< g Yoo Fo] Lo} -4 =TS PP USSRt 1
FOrmalisation de I'algOritNmME e e e e e e e e e e e e e e e e e s e e b e b e raaeeeeeeeeaeaaaaaaaens 2
[T T= Tl e [l o [T o T 4 (o] o S PPPPPPRPR 2
Qualités d'un algorithme, d'UN PrOZIramMIMEcciicuiiiieee ettt e e e et e e e e st rr e e e e e e aaaaeeeeeessssaeeeeeansssaeeeeaaas 3
Exemple #2 : Préparer une tasse de €afé SOIUDIEooiiiiiiiiii s 4
Langage de description : INSTIUCTIONScciiiiiiiiiee et e e e e e e e e et e e e e e e abta e e e e e e ernnbaeeeaseenanraneeas 5
1° 1es iNStructions de 1ECTUIE (A'@NTIER)uveeiiiieeieeeee et e e et e e e e e trae e e e e e eetreeeeeeeenaraeeeas 5
2° 1es inStructions d'ECritUre (@ SOITI) ..eeiiiiieiiieee e e ettt e e ettt e e e et e e e e e e e et beeeeeeeeeattseeeeeeessaseeaaeeannsees 5
3° les instructions d'assignation (d'affectation).........ccuueiie i 5
Exemple #3 : Convertir un nombre de secondes en heure , minutes, SECONAES.ccceeeveciivieeeeieciiieeee e 6
Exemple #4 : Transformer une chaing de CAractere ... e e e e e e e e e 6
Langage de description : DECIAratioNccoccuiiiii i ittt e e e e et e e e e e e e abb e e e e e e e ernnbaeeeaeeenanraneeas 7
RESUME SUI 1€ € PSEUAO COUE M .evviiiiiiiiiiie ettt e eetteee ettt e e e e ettt e e e e e e st e e e e e e sabbeaeeeeesnsbaaeaeeesnsnbtaaaasesnnssenaeas 8
DEfINItioN d’UN « OFZANIZIaMIME M.uviiiieeiieiitiieee e e eeciitee e e e e eetteeeeeeeeetteeeaeeeesattaseaeeeeasteseaaeeaasraseaaeeaastsssaasaansreneens 9
Convention d’écriture d’ Un OFganiGramIMEc.iccciiiiiee e ecciieee e e e et e e e e e ecra e e e e e e e sttaeeeeeeesaasaeeeeseasssaeeeeeannsssseeeeennns 9
Les différentes structures d’ organigramimeciiiiiciiiiiei i e e e e et ee e e e e e e sbrae e e e e e ssabreeeeeeesnanreees 10
BT e Lo Y o I L oY== Y P 10
RE I o oI 1= o o F= Y o 1Y RSP 11
Exemple : Fonctionnement d’une alarme de MaiSONuviivieieiiiieeiieeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeas 12

Un algorithme peut se représenter de plusieurs manieéres :
- Le Pseudo Code
- L'organigramme

MD v1.0.1 02/01/2019

[] 7,
//_—c{/m de Algorithme : Pseudo-Code & Organigramme | Page 1
Réadaptation

de Mulhouse

Définition du « Pseudo Code »

En programmation, le pseudo-code, également appelé LDA (pour Langage de Description d'Algorithmes) est une
facon de décrire un algorithme en langage presque naturel, sans référence a un langage de programmation en
particulier.

L'écriture en pseudo-code permet souvent de bien prendre toute la mesure de la difficulté de la mise en ceuvre de
I'algorithme, et de développer une démarche structurée dans la construction de celui-ci. En effet, son aspect
descriptif permet de décrire avec plus ou moins de détail I'algorithme, permettant de ce fait de commencer par une
vision trés large et de passer outre temporairement certains aspects complexes, ce que n'offre pas la
programmation directe.

Il n'existe pas de réelle convention pour le pseudo-code.

Exemple #1 : Calcul d’intérét et de valeur acquise

Soit le probléeme suivant :
« Calcul de I'intérét et de la valeur acquise par une somme placée a intérét simple pendant un an »

L’énoncé du probleme indique :
- Les données fournies :deux nombres représentant les valeurs de la somme placée et du taux d'intérét.
- Les résultats désirés : deux nombres représentant I'intérét fourni par la somme placée ainsi que la valeur
obtenue apres placement d'un an.

Il nous faut maintenant décrire les différentes étapes permettant de passer des données aux résultats. Nos
connaissances générales nous permettent d'exprimer cette régle:

« Pour obtenir l'intérét fourni par la somme, il suffit de multiplier la somme par le taux d'intérét divisé par cent; la
valeur acquise s'obtient en additionnant ce dernier montant et la somme initiale. »

Méthodologie

Dans cet exemple simple apparaissent les trois étapes qui caractérisent la résolution d'un probléme sur ordinateur:

1) Comprendre la nature du probléme posé et préciser les données fournies ("entrées" ou "input" en anglais).
2) Préciser les résultats que I'on désire obtenir ("sorties" ou "output" en anglais).
3) Déterminer le processus de transformation des données en résultats.

Ces trois étapes ne sont pas indépendantes et leur ordre peut étre modifié.

Si les résultats fournis par I'ordinateur ne sont pas corrects, c'est qu'une erreur s'est glissée :
- soit dans I'analyse du probleme
- soit dans la mise au point de I'algorithme
- soit dans sa traduction en langage de programmation car 'ordinateur ne fait qu'exécuter scrupuleusement
les opérations demandées.

) =
é il Réa’égg"tf:gi’;n Algorithme : Pseudo-Code & Organigramme | Page 1

Y contre ae Algorithme : Pseudo-Code & Organigramme | Page 2
Réadaptation

de Mulhouse

Formalisation de I'algorithme

En reprenant la méthodologie décrite ci-dessus, I'exemple précédent deviendrait:

1) Prendre connaissance de la somme initiale et du taux d'intérét.

2) Multiplier la somme par le taux; diviser ce produit par 100; le quotient obtenu est I'intérét de la somme.
3) Additionner ce montant et la somme initiale; cette somme est la valeur acquise.

4) Afficher les valeurs de l'intérét et de la valeur acquise.

Il est évident, méme sur cet exemple simple, qu'une telle formalisation risque de produire un texte long, difficile a
comprendre et ne mettant pas clairement en évidence les différentes étapes du traitement.

Langage de description

Dans un langage de description, les actions sont généralement décrites par un symbole ou un verbe a l'infinitif choisi
pour éviter les confusions. Ce langage est appelé pseudo-code.

En pseudo-code, notre exemple #1 devient:

1) écrire " Introduisez la somme initiale (en euros): "

2) lire somme_initiale

3) écrire " Introduisez le taux d'intérét (ex: 3 pour 3%): "

4) lire taux

5) intérét <-- somme_initiale * taux / 100

6) valeur_acquise <-- somme_initiale + intérét

7) écrire " L'intérét fourni estde ", intérét, " euros"

8) écrire " La somme apres un an serade " ,valeur_acquise, " euros"

Nous pouvons remarquer deux verbes particuliers:

- lire qui correspond a la saisie, a l'introduction des données;
- écrire qui exécute I'affichage a I'écran ou I'impression des résultats.

Ces verbes sont soulignés pour indiquer qu'ils ont un sens particulier, qu'il est interdit de les utiliser dans un autre
sens et qu'ils seront traduits pour étre rendus compréhensibles par la machine.

Les valeurs manipulées dans cet algorithme sont des constantes (100) et des variables (somme_initiale, taux, intérét,
valeur_acquise). Il est pratique de choisir le nom des variables de maniére a rappeler la signification de la valeur
qu'elles représentent. Ce nom est souvent appelé identificateur de la variable. Les variables jouent le réle de "tiroirs"
dans lesquels on place une valeur durant I'exécution de I'algorithme.

Ainsi, « lire somme_initiale » signifie que I'on introduit dans le tiroir baptisé « somme_initiale » la valeur numérique
entrée au clavier lors de I'exécution du programme.

Le contenu d'un de ces tiroirs peut étre modifié en y plagant le résultat d'un calcul. Cette instruction porte le nom
d'assignation ou affectation et se représente par une fleche (<--).

Ainsi, « intérét <-- somme_initiale * taux /100 » signifie que I'on place dans le tiroir « intérét » le résultat de
I'opération figurant a droite de la fleche. Cette instruction se lit: « assigner a la variable intérét la valeur de
I'expression de droite ».

8 2
i 5 i Réa’éggg{;ﬂ;gn Algorithme : Pseudo-Code & Organigramme | Page 2

[] 7,
//_—c{/m de Algorithme : Pseudo-Code & Organigramme | Page 3
Réadaptation

de Mulhouse

Les expressions symbolisant les calculs a effectuer sont représentées par des formules algébriques faisant intervenir
les noms des variables, des symboles mathématiques ("+" pour I'addition, "-" pour la soustraction, "*" pour la
multiplication, "/" pour la division, ...) et des constantes numériques.

La description d'une action et des objets qui y participent porte le nom d'instruction. L'ordre dans lequel les
différentes opérations seront écrites indique |'ordre dans lequel elles seront exécutées: de haut en bas. Il s'agit d'une
exécution séquentielle.

Qualités d'un algorithme, d'un programme

Tout programme fourni a I'ordinateur n'est que la traduction d'un algorithme mis au point pour résoudre un
probléme donné dans un langage de programmation.

Pour obtenir un bon programme, il faut partir d'un bon algorithme. Il doit, entre autres, posséder les qualités
suivantes:

Etre clair, facile 8 comprendre par tous ceux qui le lisent (structure et documentation).
- Présenter la plus grande généralité possible pour répondre au plus grand nombre de cas possibles.

- Etre d'une utilisation aisée méme par ceux qui ne |'ont pas écrit et ce grace aux messages apparaissant a
|'écran qui indiqueront quelles sont les données a fournir et sous quelle forme elles doivent étre introduites
ainsi que les différentes actions attendues de la part de I'utilisateur.

- Etre congu de maniére a limiter le nombre d'opérations a effectuer et la place occupée en mémoire.

Une des meilleures fagons de rendre un algorithme clair et compréhensible est d'utiliser une programmation
structurée n'utilisant qu'un petit nombre de structures indépendantes du langage de programmation utilisé.

Une technique d'élaboration d'un bon algorithme est appelée méthode descendante (top down). Elle consiste a
considérer un probleme dans son ensemble, a préciser les données fournies et les résultats a obtenir puis a
décomposer le probleme en plusieurs sous-problémes plus simples qui seront traités séparément et éventuellement
décomposés eux-mémes de maniéere plus fine.

) =
é il Réa’égg"tf:gi’;n Algorithme : Pseudo-Code & Organigramme | Page 3

Y contre ae Algorithme : Pseudo-Code & Organigramme | Page 4
Réadaptation

de Mulhouse

Exemple #2 : Préparer une tasse de café soluble

Imaginons un robot domestique a qui nous devons fournir un algorithme lui permettant de préparer une tasse de
café soluble. Une premiere version de I'algorithme pourrait étre:

1) Faire bouillir de I'eau
2) Mettre le café dans la tasse
3) Ajouter I'eau dans la tasse

Les étapes de cet algorithme ne sont probablement pas assez détaillées pour que le robot puisse les interpréter.
Chaque étape doit donc étre affinée en une suite d'étapes plus élémentaires, chacune étant spécifiée d'une maniére
plus détaillée que dans la premiéere version.

Ainsi, I'étape « 1) Faire bouillir I'eau » peut étre affiné en :

1.1) Remplir la bouilloire d'eau

1.2) Brancher la bouilloire sur le secteur
1.3) Attendre I'ébullition

1.4) Débrancher la bouilloire

De méme,
« 2) Mettre le café dans la tasse » pourrait étre affiné en :

2.1) Ouvrir le pot a café.

2.2) Prendre une cuillére a café.

2.3) Plonger la cuilléere dans le pot.

2.4) Verser le contenu de la cuillere dans la tasse.
2.5) Fermer le pot a café.

« 3) Ajouter de I'eau dans la tasse » pourrait étre affinée en :

3.1) Verser de I'eau dans la tasse jusqu'a ce que celle-ci soit pleine.

Certaines étapes étant encore trop complexes et sans doute incompréhensibles pour notre robot, il faut les affiner
davantage.

Ainsi I'étape « 1.1) Remplir la bouilloire d'eau » peut nécessiter les affinements suivants:
1.1.1) Mettre la bouilloire sous le robinet
1.1.2) Quvrir le robinet
1.1.3) Attendre que la bouilloire soit pleine
1.1.4) Fermer le robinet

Quand il procede a des affinements des différentes étapes, le concepteur d'un algorithme doit naturellement savoir
ou s'arréter. Autrement dit, il doit savoir quand une étape constitue une primitive adéquate au point de ne pas avoir
besoin d'affinement supplémentaire. Cela signifie évidemment qu'il doit connaitre quelle sorte d'étape le processeur
peut interpréter. Par exemple, le concepteur de I'algorithme précédent doit savoir que le robot peut interpréter
"brancher la bouilloire" ce qui de ce fait n'exige pas d'affinement, mais qu'en revanche, il ne peut pas interpréter
"remplir la bouilloire" et que dés lors un affinement devient nécessaire.

8 2
i 5 i Réadaptatic Algorithme : Pseudo-Code & Organigramme | Page 4

//3//__//

Y contre de Algorithme : Pseudo-Code & Organigramme | Page 5
Réadaptation

de Mulhouse

Langage de description : Instructions

Dans les algorithmes décrivant des calculs sur les quantités numériques, seront utilisées essentiellement les
instructions que nous avons déja étudiées.

1° les instructions de lecture (d'entrée)

lire variable
indigue la saisie des données.

Exemples:
lire somme_initiale
lire taux

2° les instructions d'écriture (de sortie)

écrire expression
indique I'affichage d'un message et/ou du contenu d'une variable (ou du résultat d'un calcul).

Exemples:

écrire « Introduisez la somme initiale (en Euro): »
écrire « L'intérét fourni est de « intérét »

3° les instructions d'assignation (d'affectation)

variable <-- expression

Exemples:
intérét <-- somme-initiale * taux / 100
a<-0
i<—-i+1

Les expressions sont des formules mathématiques symbolisant des opérations sur des variables et/ou des
constantes numériques.

Les variables y sont représentées par un identificateur (un nom) comme en algebre et les constantes sont des
nombres écrits en chiffres.

Les opérations sur des nombres sont représentées par +,-,*, /.
D'autres fonctions mathématiques usuelles sont couramment utilisées: In x, sin x, arctg x, [x] (signifie prendre la
partie entiere de x), a mod b (fournit le reste de la division de a par b), xy, loga x, ...

L'ordinateur peut également manipuler des variables contenant des chaines de caractéres alphanumériques pour les
modifier, en extraire des sous-chaines... Ces chaines de caracteres sont placées entre guillemets pour les distinguer
des noms de variables. La concaténation (juxtaposition de 2 chaines pour en former une nouvelle) est symbolisée par
« + » séparant les 2 chaines originelles. La fonction qui permet d'extraire une sous-chaine est représentée par le nom
de la variable avec en indice les positions des lettres a extraire.

f.'//

Centre de

Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 5

[]
.._i/
Y contre ae Algorithme : Pseudo-Code & Organigramme | Page 6
Réadaptation

de Mulhouse

Ainsi la sous-chaine formée des caracteres occupant les positions 2, 3, 4 dans la variable « prénom » sera symbolisée
par:
« prénom2<--4 »,

Enfin, la fonction qui fournit la longueur (le nombre de caractéres) de la chaine contenue dans la variable prénom est
symbolisée par |prénom|.

Exemple #3 : Convertir un nombre de secondes en heure , minutes, secondes.

Exprimer un nombre de secondes sous forme d'heures, minutes, secondes. La seule donnée fournie est le nombre
total de secondes que nous appellerons « nsec ». Les résultats consistent en 3 nombres « h », « m », « s ».

Ecrire " Introduisez le nombre de secondes"

lire nsec

s <-- nsec mod 60

m <-- (nsec / 60) mod 60

h <-- nsec / 3600

écrire nsec, "valent: ", h, "heure(s) ", m, "minute(s) et", s, "seconde(s)"

Exemple #4 : Transformer une chaine de caractere

Donner la longueur du prénom et transformer un prénom et un nom en une chaine contenant l'initiale du prénom
séparée du nom par un point.

écrire "Quel est votre prénom?"

lire prenom

écrire "et votre nom?"

lire nom

pr <-- prenoml

lpr <-- |prenom |

identification<-- pr + "." + nom

écrire "Votre prénom de", Ipr, "lettres a été abrégé et votre identification est : ", identification

Centre de

Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 6

Vi Ll

y

7

i 7 Centre de
Réadaptation

de Mulhouse

Algorithme : Pseudo-Code & Organigramme | Page 7

Langage de description : Déclaration

Il est aussi nécessaire de préciser ce que les variables utilisées contiendront comme type de données. Il peut s'agir
de nombres entiers, de nombres réels, de chaines de caracteres... |l faut faire précéder la description de I'algorithme
par une partie dite déclarative ou I'on regroupe les caractéristiques des variables manipulées.

La partie déclarative est placée en téte de l'algorithme et regroupe une ou plusieurs indications de la forme:

entier variables
ou
réel variables

L'algorithme complété de I'exemple #3 devient:

entier nsec

entier h

entier m

entier s

écrire "Introduisez le nombre de secondes:"

lire nsec

s <-- nsec mod 60

m <-- (nsec / 60) mod 60

h <-- nsec / 3600

écrire nsec, "valent: ", h, "heure(s)", m, "minute(s) et", s, "seconde(s)"

L'algorithme complété de I'exemple #4 devient:

entier lpr

chaine prenom, nom, identification
écrire "Quel est votre prénom?"
lire prenom

écrire "et votre nom?"

lire nom

pr <-- prenoml

lpr <-- |prenom|

identification <-- pr +"." + nom

écrire "Votre prénom de",lpr,"lettres a été abrégé et votre identification est : ",identification

o2 2.,

Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 7

//3//__//

Y contre de Algorithme : Pseudo-Code & Organigramme | Page 8
Réadaptation

de Mulhouse

Résumé sur le « Pseudo Code »

Pour I'échange de données entre le programme et |'utilisateur (ou le disque du PC), 2 mots sont utilisés:

1) lire : pour recevoir de I'info du monde extérieur:
a. lire Nou N est le nom de la variable qui va recevoir l'information fournie par I'utilisateur
b. lire N sur Fichier ou N est le nom de la variable qui va recevoir l'information récupérée dans le fichier
Fichier.

2) écrire pour fournir de I'info au monde extérieur:
a. écrire "Bonjour tout le monde." ou la partie entre guillemets est le message a afficher a I'écran.
b. écrire N ou N est le nom de la variable qui contient I'information a écrire.
c. écrire N sur Fichier ou N est le nom de la variable qui contient I'information a écrire sur le fichier
Fichier.

3) Lorsque le programme travaille, on utilise I'assignation <-- pour symboliser la mémorisation dans une

variable :
a. N<--N+2
b. St<--"Hello"

c JINL L Réaéff;"t‘;sP‘f;n Algorithme : Pseudo-Code & Organigramme | Page 8

[]
//__// Algorithme : Pseudo-Code & Organigramme | Page 9

. Centre de
Réadaptation

de Mulhouse

Définition d’un « Organigramme »

En programmation, I'organigramme est une représentation graphique normalisée de I'enchainement des opérations
et des décisions effectuées par un programme informatique.

Un organigramme peut également étre appelé « algorigramme » ou « logigramme » et est composé des éléments
suivants :

ORGANIGRAMME = DIAGRAMME D’ACTIVITE

1 (ou des) points de deépart ®

des actions

mgw ifat beau? =
des conditions |
des flux de séquence _
1 point de terminaison o
Convention d’écriture d’un organigramme
Chaque « case » d’un organigramme posséde une fonction précise.
A 4
Case étape (rectangle) : ¢ Case test (losange) :
case ol I'on inscrit les actions a - case ol I'on inscrit les Al
réaliser par le systéme Déclencher alarme conditions du systéme astri::ae

automatique. ¢ alzomatique.
2 cas : soit la condition est

vraie et on suit la branche
Oui, soit la condition est
fausse et on suit la branche

Non.

Le sens par défaut des liens du flux d'exécution est :
Du haut vers le bas pour les liens verticaux.
De la gauche vers la droite pour les liens horizontaux.

Lorsque le sens par défaut n'est pas respecté, il est nécessaire de le préciser par une fleche a I'extrémité du lien.

w2 s

ApEatio Algorithme : Pseudo-Code & Organigramme | Page 9

e REAapTation
de Mulhouse

7 Centre de Algorithme : Pseudo-Code & Organigramme | Page 10

Réadaptation

de Mulhouse

Les différentes structures d’organigramme

Séquence linéaire

Séquence alternative Séquence répétitive Séquence répétitive

« si...alors...sinon » « tant que...faire... » « répéter...jusqu’a... »

Tratement

Tratement 1

Tratement 2 Traitement 1 Traitement 2 Traitement
|
Debut Si « condition » N
Tant que « condition »)
« « Traitement 1 » |« alors « Traitement 1 »)) Répéter « traitement »
; . . » faire « traitement »

+ « Traitement 2 » |« sinon « Traitement 2 » jusqu'a « condition »

] o Fin tant que
Fin Fin si

Transition linéaire

Dans un organigramme, la transition entre les éléments se fait séquentiellement. Plus concrétement, une action

démarre lorsque I'action précédente se termine.

&
D& out

réalizer k2 diagramme d'activité

alider e disgramme d'activite

C

fin

') []
o /&/— Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 10

//_0_//_//

7 Centre de Algorithme : Pseudo-Code & Organigramme | Page 11
Réadaptation

de Mulhouse

Transition alternative

Les transitions alternatives (dépendant d’une condition) ménent vers des actions différentes.

YWalider le disgramme d'activié

>

Modification du validateur

[aucune modification 4 apportar] [madification importants]

[modifications mineures]

Publier le disgramme valdé
Adapter le dagramme existant Fewvaoir 'enzemble de 'snalyze

Centre de

.. Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 11

°/,
%ﬁm de Algorithme : Pseudo-Code & Organigramme | Page 12
Réadaptation

de Mulhouse

Exemple : Fonctionnement d’une alarme de maison

Soit le probléme suivant :

- Si quelgu’un franchit la porte ou une fenétre de la maison, et si I’'alarme est active a ce moment-la :
L’alarme sonore se déclenche.
- L’alarme s’arréte lorsque I'on désactive le systéeme d’alarme.

Debut

-
e
F "

nof
Franchissement porie

Franchizsement fenétra

Alarme active

Test Programme pas a pas :

Declencher alarme Début =
Test : Franchissement porte ?

Non

Test : Franchissement fenétre ¥

O

Test . Alarme active 7

Oui

Action : Déclencher alarme

Test : Alarme inactive 7
Eteindre alarme Oui

Action : Bteindre alarme

--- FIN DU DOCUMENT ---
http://www.arfp.asso.fr

1 j []
i /&[Réadaptation Algorithme : Pseudo-Code & Organigramme | Page 12

de Mulhouse

http://www.arfp.asso.fr/
http://www.arfp.asso.fr/

