3 Conception & Développement Informatique

Développer les composants d’accés aux données

5 Centre de
Réadaptation o
de Mulhouse pprentissage
INTRODUCTION A MONGODB
Sommaire

D= T T4 To] o H T TP OPTOUSPPRT 1
SQOL VS INOSQL...eeetetereterirertetrtrtreuetteerereeeaeeeeere e e ——————————————————e—eaeseaeaestateesesaaesesaseseseseseseseseseseseseseeasesesesesesenesensssnnnsnsnnnnns 1
« Tables SQL » vS « DOCUMENTS NOSQOL M ..couiiiiiiiiiitieiieeie ettt ettt st sttt e e bt e s bt e sae e st s beesbeesbeesbeesaeeenseeeeens 1
« SChéma SQL » VS « LOGIQUE NOSQL 3 ...vviiiiiiiieieiiiieeeeiiteeeeciteeeeesteeeeeatteeeeasaeeesaasseeessssseeesasssnsesansssessasseeesanssneens 1
« Normalization SQL » VS « DENormalisation NOSQL Meeeiuiiiriiiiiiiinieesiteesreesite et esreeesireesvee s sateesveeesareenas 2
« Jointure SQL » VS « Pas de jointures dans NOSQL »eceecveeeeeiiieeeeeiirieeeeeireeeeeetreeeeetreeeeerseeeessseeeesnseeeeenneeens 2
« Intégrité SQL » VS « NOSQL Data INTEEIITY » .eeeeeereeeieiiieeeeiieeeeeiteeeeeerteeeeeteeeeeetrreeeeetreeeeensseeeeensseeeesnseeeeenneeens 2
« CRUD SQL » VS « CRUD NOSQL 3 ..vtttieuuiieeiiiiieeesiiiteeesiiiteesssitteesssutteesssssteesssssseessassseesssssseesssssnesssssssesssssssesssssssees 2
MongoDB : Présentation et iNStallationccueiiieiiii ittt e e e et e e e e bt e e e ebr e e e e ebrae e e enraeeeeans 3
Utilisation de MONGODB CHENTciiiiiiiiieiieee et e e et e e s et e e e e sbteeeesabteeessstaeeesstaeeessstaeessassaeassnns 4
LE FOMMAL JSON ...ttt st et e e e bt e bt e s b e s ae e st e s bt e bt e bt e e beesbe e saneeane e b e e saeesanesanesane 4
Use : Sélectionner UNe Dase de dONNEES ..ottt ettt et e bt e st e st e s be e be e beesaeas 5
Insert() : Insérer des donnNées dans MONGODB...........ooi i iiii ittt e e e ette e e e ebte e e e ebteeeeebtaeeeenssaeaasans 6
Find() : Lire des données dans MONZODB...........cociiiiiieieiieeecccieeeeectee e e ectte e e e etteeeeeetteeeesbteeesastseeesssseasasssaseesassanananns 7
FiNd() : Les Criteres de reCherChES @VANCEScccvviiiiciveee ettt eette e et e e e eetreeeeeetreeeesetbeeeesetaeeeesnsraeeesnns 9
FINA() ¢ FIrEr 188 FESUITATSvveiiiciieee ettt ettt ettt eette e e e eetre e e e eetbaeeeeettaeeeeasaaeeesassaesesansseeeeansseeesantreeesansreeenn 10
oo [I W g LT (=T =T U1 =) £ 11
Update() : Mettre a jour des données dans MONGODBc.cuuiiiiiiiiii et ettt e e e eaaee e e eanreee s 12
Update() : Ajout & Modification d’Une ProPri€té..........ociiiiieeeciiieiiieciee et et esee e re e e stae e s sreeetaeesateeebaeesaneeens 12
Update() : Mettre a jour pluSieUrs @NregistrEMENTSc.eciieeeiiieeiiee et e eteeertre e sreeeteeesreeesteeesaaeesbaeenaneas 13
Update() : SUPPression d UNE ProOPriGle.........cccuiiceiieieeiiieeiiee ettt esreescteeeetteeseteeestaeesseesabaeesbessseeessseessseeessseesns 13
Remove() : Supprimer un document d’une COHBCLIONcccuiiiieeciieeecee e et e e areee s 14
[[CeT g o U T=Re [V o Lo Tol N1/ 1T o | S5 USRI 16
(O 1o | ST P S SOP PP PRUROPTO 16

Mickaél DEVOLDERE 28/09/2018

Y contre e Introduction @ MongoDB | Page 1
Réadaptation

de Mulhouse

Définition

Le sigle SQL signifie « Structured Query Language » (Langage de requétes structurées).
Le sigle NoSQL signifie « Not Only SQL ».

SQL vs NoSQL

Les bases de données SQL existent depuis plusieurs décennies et sont largement utilisées depuis les années 1990.
Les bases de données NoSQL, méme si elles existent depuis les années 60, n’ont pris de I'ampleur que récemment.

Avant de présenter la solution NoSQL « MongoDB », il est important de noter les avantages, inconvénients... bref les
différences entre les bases de données relationnelles et les bases de données NoSQL.

« Tables SQL » vs « Documents NoSQL »

Les données stockées dans une base SQL sont organisées en tables reliées entre elles. La structure et le type des
données sont rigides (fixées a I'avance).

Dans les projets liés a une base SQL, la base de données doit étre modélisée avant d'implémenter une logique
métier. Avec ce fonctionnement, il est difficile de faire des erreurs.

Dans une base NoSQL, les données sont enregistrées sous forme de « documents » eux-mémes stockés dans des
« collections ».

La ou NoSQL repousse les limites du SQL ; c’est que I'on peut stocker les données que I'on souhaite dans n‘importe
guel document. La base NoSQL n’a pas de structure définie a I'avance. NoSQL est plus flexible mais offre la possibilité
de stocker des données n'importe ou, ce qui peut entrainer des problémes de cohérence.

« Schéma SQL » VS « Logique NoSQL »

Dans une base de données SQL, il est impossible d’ajouter des données tant que les tables ne sont pas définies (avec
leurs colonnes et leur type de données). La définition des tables est ce qu’on appelle un « Schéma ». Ce schéma
contient donc les informations sur la structure des tables, les clés primaires, les index, les contraintes, les
déclencheurs et les procédures stockées.

Le schéma de la base de données doit étre congu et mis en ceuvre avant que toute logique métier puisse étre
développée pour manipuler les données.

Il est évidemment possible de modifier, par la suite, un schéma SQL existant mais de gros changements rendent la
mise a jour des objets métiers compliquée.

Dans une base de données NoSQL, la logique est totalement différente. Il est en effet possible d’ajouter des données
n’importe ol, a tout moment, sans qu’il soit nécessaire de spécifier une conception ou une collection a I'avance. Les
« collections » et les « documents » sont créés a la volée (agir sur une collection inexistante la créera
automatiquement).

Les bases de données NoSQL sont probablement plus adaptées aux projets ou les exigences initiales en matiere de

données sont difficiles a déterminer. Attention toutefois a ne pas confondre « difficulté » et « paresse ».
Négliger la conception d’un bon stock de données peut drastiquement réduire vos chances de succes.

7[]
é A Réadapiation Introduction & MongoDB | Page 1

=

Y contre ae Introduction @ MongoDB | Page 2
Réadaptation

de Mulhouse

« Normalization SQL » VS « Dénormalisation NoSQL »

Le principe de « Normalisation » et de « Dénormalisation, précise la fagcon dont les données sont dupliquées (NoSQL)
ou reliées par des clés étrangéres (SQL).

La normalisation SQL réduit au minimum la redondance des données et assure les liens entre les tables grace a des
références entre elles (clés étrangéres).

Le principe de dénormalisation admet une duplication des données ce qui conduit a des requétes beaucoup plus

rapides en lecture mais en contrepartie, beaucoup plus lentes en écriture (si I’écriture concerne plusieurs
enregistrements).

« Jointure SQL » VS « Pas de jointures dans NoSQL »

Les requétes SQL permettent 'utilisation d’une clause JOIN permettant d’obtenir des données de plusieurs tables en
une seule instruction SQL.

NoSQL n’implémente pas toujours cette clause. Par exemple, dans MongoDB, il sera nécessaire de récupérer
séparément les différents éléments et de les associer en implémentant la logique métier adaptée.

« Intégrité SQL » VS « NoSQL Data Integrity »

La plupart des moteurs SQL permettent d’appliquer des regles d’intégrité de données a I'aide de contraintes de clés
étrangeres. Cela empéche notamment de supprimer un élément référencé dans d’autres éléments.
Le schéma SQL applique ces regles pour prévenir la création de données invalides ou d’enregistrements orphelins.

Ces options n’existent pas dans les moteurs NoSQL. Il est possible de stocker ce que I'on veut indépendamment de

tout autre document issu de la méme collection. Pour « simuler » ces options d’intégrité, il faudra, une fois de plus,
implémenter la logique dans les classes métier.

« CRUD SQL » VS « CRUD NoSQL »

SQL est un langage déclaratif devenu depuis une norme internationale.
Le CRUD SQL contient généralement : CREATE, SELECT, UPDATE, DELETE.
Le CRUD NoSQL ressemblerait plus a INSERT, FIND, UPDATE, REMOVE (cela peut varier d’'un moteur NoSQL a I'autre).

Malgré les différences dans les termes utilisés, I'objectif reste le méme : Lire, insérer, mettre a jour et supprimer des
données.

Vi Ll

Réadaptation Introduction & MongoDB | Page 2

//y/

Y contre de Introduction @ MongoDB | Page 3
Réadaptation

de Mulhouse

MongoDB : Présentation et installation

MongoDB est un systeme de gestion de bases de données de la mouvance « NoSQL ». Il est orienté « document » et
sa philosophie est de pouvoir gérer de (trés) grandes quantités de données. Cette philosophie permet a MongoDB
d’étre idéal dans un contexte « Big Data ».

Installation de MongoDB

| / '\ MongoDB est peut-étre déja installé sur votre machine ! Si tel est le cas, passez directement a |’étape suivante.

Se rendre sur le site officiel de MongoDB : http://www.mongodb.org/ puis récupérer la derniére version stable du
logiciel

Une fois installé, vérifier la présence du répertoire « C:\data\db ». S’il n’existe pas, le créer. Par défaut, MongoDB
stocke les bases de données dans ce répertoire.

Lancement de MongoDB Server

Ouvrir une invite de commande, naviguer jusqu’au dossier « bin » se trouvant dans le répertoire d’installation de
MongoDB puis lancer I'exécutable « mongod ». Si le démarrage est réussi, un message du type « Waiting for
connections on port 27017 » apparait a la fin du processus de démarrage.

[z.] Admiinistrateur : Invite de commandes

Microsoft Windows [version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Tous droits réservés.

C:\Users\CRM>cd c:\apps\mongodb-server\bin

c :\apps\mongodb-server\bin>mongodyg

|2618-66-14T69;22:31.778+6266 I NETWORK [initandlisten] waiting for connections on port 27017

Tant que la fenétre du terminal est ouverte, le serveur est en fonctionnement et a I'écoute. Fermer la fenétre met
fin au processus et stoppe le serveur MongoDB.

Lancement de MongoDB Client

Tout en laissant la fenétre du serveur MongoDB ouverte, ouvrir une seconde invite de commande puis lancer
I’exécutable « mongo ». Vous étes désormais connecté avec le moteur de base de données MongoDB.

C : \apps\mongodb-server\bln>mongo
MongoDB shell version v3.6.5

connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.6.5

Dans certains cas, le terminal peut afficher quelques avertissements, ignorez les pour le moment.

N
X

Réadaptation Introduction @ MongoDB | Page 3

https://www.mongodb.com/big-data-explained
http://www.mongodb.org/

i %/ Centre de
Réadaptation

de Mulhouse

Introduction @ MongoDB | Page 4

Utilisation de MongoDB Client

La ou les moteurs SQL stockent les données en ligne dans des tables, MongoDB modélise les informations sous
forme de documents au format JSON (Javascript Object Notation) et les stocke en au format BSON (Le format BSON

est en réalité du JSON au format binaire).

Plus concretement, on envoie des objets JSON dans les requétes d’écriture, MongoDB les stocke au format BSON.
Lorsque nous récupérons un jeu de résultat a partir d’'une requéte en lecture, des objets au format JSON sont
retournés et directement exploitables par de nombreux langages tels que Javascript, PHP, C#, et bien d’autres...

De plus, les parametres des différentes méthodes de MongoDB sont au format JSON.

Le format JSON

Le format JSON se base sur des paires « Clé/valeur » ol la valeur peut étre :
1) Une chaine de caractéres
2) Un type numérique (entier, flottant...)
3) Untableau
4) Un autre objet JSON
5) Lavaleur « null »

Exemple :

"nom": "DEVOLDERE",

"prenom": "Mickaél",

"surnom": null,

"age": 37,

"interets": ["AstroBiology", "Networks", "Web Development"],

"projets": [
{"nomProjet": "NetworkSpeed", "version": "1.1.0"},
{"nomProjet": "RegexTester", "version": "2.3.7"}

- Les accolades de début et fin encapsulent I'objet JSON

- Les entrées « nom », « prénom » ont pour valeur une chaine de caractére
- L’entée surnom a pour valeur « null »

- L’entrée « age » a pour valeur un entier

- L’entrée « intéréts » a pour valeur un tableau

- L’entrée « projets » a pour valeur un tableau contenant des objets JSON

/ Ny 3
- = Egédaptation

Introduction @ MongoDB | Page 4

https://www.json.org/json-fr.html

=

Y contre ae Introduction @ MongoDB | Page 5
Réadaptation

de Mulhouse

Use : Sélectionner une base de données

Avant de pouvoir manipuler des données dans MongoDB, il est nécessaire de sélectionner une base de données.
Pour cela, nous utiliserons l'instruction « use », identique au langage SQL.

Dans le terminal du client MongoDB, sélectionnez la base de données « people »

> use people

switched to db people

MongoDB vous indique qu’il a basculé vers la base de données sélectionnée.

Sélectionner la base ? Mais nous n’en avons créé aucune !

Exact, si la base de données demandée n’existe pas, MongoDB la créera automatiquement.

Collections et Documents

Dans une base de données relationnelle (SQL) on crée des tables pour y stocker nos données.

Dans MongoDB, une base de données contient des « collections » dans lesquelles on ajoute des « documents ». Une
collection est donc un ensemble de documents de méme nature.

Tout comme pour les bases de données, les collections sont créées implicitement dés qu’un document y est inséré.

MongoDB limite la taille des documents a 16 Mo (ici, un utilisateur = un document). Si une collection contient des
documents qui approchent cette limite, il peut étre judicieux de la redécouper en plusieurs collections.

7[]
<" £ Réadapiation Introduction & MongoDB | Page 5

https://docs.mongodb.com/manual/core/databases-and-collections/
https://docs.mongodb.com/manual/core/document/

//y/

Y contre de Introduction & MongoDB | Page 6
Réadaptation

de Mulhouse

Insert() : Insérer des données dans MongoDB

Nous allons créer une collection d’utilisateurs. La création de la collection est implicite, elle se fait automatiquement
a l'insertion du premier document.

Pour insérer un premier document nous utiliserons la commande Insert() qui accepte 1 parametre : I'objet JSON a
insérer.

Insertion d’un nouvel utilisateur dans notre base de données « people » :

| db.utilisateurs.insert({nom:"DEVOLDERE", prenom:"Mickaél"})

| Si elle n’existe pas, la collection “utilisateurs” est automatiquement créée dans la base de données en cours d’utilisation

Insérons maintenant une seconde personne :

| db.utilisateurs.insert({nom:"CHATELOT", prenom:"Franck"})

Une fois les 2 commandes saisies et validées, le terminal devrait ressembler a ceci :

> db.utilisateurs.insert({nom: "DEVOLDERE", prenom:"Mickaél"})
WriteResult({ "nInserted” : 1 })

> db.utilisateurs.insert({nom:"CHATELOT", prenom:"Franck"})
WriteResult "nInserted” : 1

Pour chaque insertion, MongoDB vous retourne le nombre de lignes ajoutées, ce qui confirme que l'insertion s’est
bien déroulée.

c?/_ f.réf’
Q ... Réadaptation Introduction @ MongoDB | Page 6

[]
I//{e/ntre de Introduction @ MongoDB | Page 7
Réadaptation

de Mulhouse

Find() : Lire des données dans MongoDB

Nous allons maintenant pouvoir vérifier si nos données ont bien été inscrites dans la base de données.

Pour cela, nous utiliserons la commande « find() »

db.utilisateurs.find()

La commande devrait vous retourner les 2 personnes précédemment créées :

> db.utilisateurs.find()

{ "_id" : ObjectId("5b2221c5e67a6b27e32bbab8"), "nom" : "DEVOLDERE", "prenom" : "Micka&l" }
{

>

" _id" : ObjectId("5b2221d3e67a6b27e32bbab9"), "nom" "CHATELOT", "prenom" : "Franck" }

Remarquez la présence de la propriété " _id" qui est un identifiant unique pour le document.
S'il n'est pas spécifié a l'insertion, MongoDB génére un unique Objectld qui identifie le document.

Cet identifiant sera utilisé pour créer des liens entre 2 collections, un peu comme les clés étrangéres en SQL.
Cependant, MongoDB ne permet pas les jointures dans les requétes de lecture. Il faudra donc exécuter plusieurs
requétes pour récupérer tous les objets liés.

MongoDB est « schemaless », c’est a dire qu’aucun schéma n’est défini a I'avance et que les documents peuvent ne
pas respecter le méme format (attention, trop de disparités dans une méme collection peut étre source de bugs si
elles sont mal gérées coté logiciel).

Par exemple, si nous ajoutons un nouvel utilisateur possédant un attribut supplémentaire, aucun probleme !

> use people

switched to db people

> db.utilisateurs .find()

{ "_id" : ObjectId("5b2221c5e67a6b27e32bbab8"), "nom" : "DEVOLDERE", "prenom" : "Micka&l" }
{ "_id" : ObjectId("5b2221d3e&67a6b27e32bbab9"), "nom" : "CHATELOT", "prenom" : "Franck" }

>

> db.utilisateurs.insert({nom:"Golay", prenom:"Jerry", Origine: "Pluton"})

WriteResult({ "nInserted" : 1 })

> db.utilisateurs .find()

{ "_id" : ObjectId("5b2221c5e67a6b27e32bbab8"), "nom" : "DEVOLDERE", "prenom" : "Micka&l" }
{ "_id" : ObjectId("5b2221d3e&7a6b27e32bbab9"), "nom" "CHATELOT", "prenom" : "Franck" }

{ "_id" : ObjectId("5b2a@fecfce3684cc3e511fa"), "nom" : "Golay", "prenom” : "Jerry", "Origine" : "Pluton" }

Nous pouvons voir ici que I'utilisateur « Jerry Golay » posséde un attribut « Origine » absent des autres entités de la
méme collection.

J'attire une nouvelle fois votre attention sur le fait qu’abuser de cette souplesse peut-étre contre-productif.

Pour connaitre le nombre de résultats retournés par une requéte, nous utiliserons la méthode « count() » en
complément de la méthode « find() » comme dans I’exemple suivant :

> db.utilisateurs.find().count()

6

Le résultat de cette requéte tient compte des utilisateurs insérés dans la partie suivante

MongoDB renvoie un entier correspondant aux nombre de documents concernés par une requéte.

é s Réadaptation Introduction @ MongoDB | Page 7

https://docs.mongodb.com/manual/reference/method/ObjectId/

//y/

|7 Centre de
Réadaptation

de Mulhouse

Find() : Les critéres de recherche

Ajoutons quelques utilisateurs a notre collection « people »

> db.utilisateurs.insert({nom:"Thiry", prenom:"Sophie", Origine: "Terre"})
WriteResult({ "nInserted" : 1 })
> db.utilisateurs.insert({nom:"Roche", prenom:’ ier", Origine: "Terre"})

WriteResult({ "nInserted" : 1 })
> db.utilisateurs.insert({nom:"DEVOLDERE", prenom:"Jean", Origine: "Terre"})
WriteResult "nInserted” : 1

Nous avons ajouté 3 utilisateurs ayant pour propriété commune « Origine ». La collection contient désormais 6
utilisateurs.

db utilisateurs.find()
i : ObjectId("5b2221c5e67a6b27e32bbabg8"), "DEVOLDERE", "prenom" : "Mickaé&l" }
: ObjectId("5b2221d3e67a6b27e32bbab9"), "CHATELOT", “"prenom" : "Franck" }
: ObjectId("5b2aefocfce3684cc3e511fa"), Golay", "prenom" : "Jerry", "Origine" : "Pluton" }

: ObjectId("5bb5ef189a2878184e450f06"), i "prenom" "Sophie", "Origine"
: ObjectId("5bb5ef389a2878184e456f07"), "prenom" : "Didier", "Origine" : "Terre"
: ObjectId("Sbb5ef5a9a2878184e456f08"), "DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Une collection pouvant étre de taille conséquente, il est possible de n’en récupérer qu’une partie.

La commande « find() » accepte 2 parametres optionnels:
- 1° parameétre : Un objet JSON qui permet de spécifier une ou plusieurs conditions (critére de recherche
équivalent de la clause WHERE en langage SQL).
- nd paramétre : Un objet JSON qui permet de filtrer les propriétés que I'on souhaite récupérer (équivalent de
Ia sélection de colonnes en langage SQL).

Exemple : Récupérer tous les utilisateurs dont la valeur de la propriété « Origine » est égale a « Terre » :

db.utilisateurs.find({Origine: "Terre"})
" _id" : ObjectId("Sbb5efl89a2078184e45@f06"), "nom "Thiry", "prenom" : "Sophie", "Origine"

: "Terre" }
"_id" : ObjectId("5bb5ef389a2078184e456f07"), "n "Roche"”, "prenom" "Didier", "Origine" : "Terre" }
" id" : ObjectId("Sbb5ef5a%9a2078184e456f08"), "n "DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Nous remarquons que tous les utilisateurs concernés sont récupérés.

Il est possible de spécifier plusieurs conditions dans la méme commande :

> db.utilisateurs.find({nom: "DEVOLDERE", Origine: "Terre"})

{ "_id" : ObjectId("5bb5ef5a9a2078184e456fe8"), "nom" : "DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Remarquez que le document correspondant a « DEVOLDERE Mickaél » n’a pas été récupéré car il ne possede pas la
propriété « Origine ».

)
4 7 Centre de
é = Réadaptation

[]
I//{e/ntre de Introduction & MongoDB | Page 9
Réadaptation

de Mulhouse

Find() : Les critéres de recherches avancés

Dans les exemples précédents, nous récupérons des documents selon une ou plusieurs conditions d’égalité.

Tout comme SQL, il est possible d’affiner les critéres de recherche grace a des opérandes implémentés dans
MongoDB dont voici les principaux :

Opérande | Signification

Seq Est égal a

Snhe N’est pas égal a

Sgt Supérieur a

St Inférieur a

Sgte Supérieur ou égal a

Slte Inférieur ou égal 3

Sor « Ou » logique

Sand « Et » logique

Sin Est égal a 'une des valeurs

Snin N’est pas égal a une des valeurs OU le champ n’existe pas
Sexists Pour vérifier I'existence ou I'absence d’un champ dans un document

Exemples :

Note : MongoDB est sensible a la casse. Ainsi, les valeurs « pluton » et « Pluton » sont considérées comme différentes de méme
que les champs « origine » et « Origine » qui sont tous deux différents.

« Seq, Sne » : Tous les utilisateurs dont I’Origine n’est pas Pluton :

« Sgt, Sgte, Slt, Slte » : Tous les utilisateurs ayant leur 4ge compris entre 18 et 99 ans.

> db.utilisateurs.find({ age: { %$gte:18, $1t:10@ } })

« $and, Sor » : Tous les utilisateurs ayant pour nom « DEVOLDERE » OU pour origine « Pluton »

‘Note : Sand et Sor s’utilisent de la méme maniére.‘

db.utilisateurs.find({ $or: [{ nom:"DEVOLDERE"}, {Origine: "Pluton"}] })
"_id" : ObjectId("5b2221c5e67a6b27e32bbabg&"), "nom" : "DEVOLDERE", "prenom" : "Micka&l" }

"_id" : ObjectId("5b2a@f@cfce3684cc3e511fa"), "nom" : "Golay", "prenom" : "Jerry", "Origine" : "Pluton" }
"_id" : ObjectId("Sbb5ef5a%a2078184e450f08"), "nom" : "DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Pour voir d’autres exemples, vous pouvez consulter la documentation officielle de MongoDB :
https://docs.mongodb.com/manual/reference/operator/

z/— :2?
% g »/y' ':
Q - Réadaptation Introduction & MongoDB | Page 9

https://docs.mongodb.com/manual/reference/operator/
https://docs.mongodb.com/manual/reference/operator/

[]
I//{e/ntre de Introduction @ MongoDB | Page 10
Réadaptation

de Mulhouse

Find() : Filtrer les résultats

Pour le moment, chaque requéte renvoie les documents concernés dans leur ensemble. Si les documents sont
volumineuy, il peut étre intéressant de ne récupérer que les valeurs dont nous avons besoin.

C’est le role du 2" parameétre de la méthode « find() » que I’on pourrait considérer comme I'équivalent de la
sélection de colonne en SQL.

Il s’agit de spécifier les champs que I'on souhaite récupérer en indiquant leur nom et en attribuant la valeur « 1 ».
Pour spécifier a MongoDB que I'on ne souhaite pas récupérer un champ en particulier, il suffit de le renseigner avec
la valeur « 0 ».

Reprenons notre base de données d’utilisateurs.

Si nous exécutons la requéte suivante :

> db.utilisateurs.find({}, {nom:1, prenom:1})

MongoDB renverra tous les utilisateurs (1°" parametre vide = pas de critére de recherche) mais les résultats ne
contiendront que les champs noms et prénoms de chaque document :

db.utilisateurs.find({}, {nom:1, prenom:1})

"_id" : ObjectId("5b2221cS5e67abb27e32bbab8"), : "DEVOLDERE", "prenom" : "Micka&l" }
“_ id" : ObjectId("5b2221d3e67a6b27e32bbab9"), : "CHATELOT", "prenom" : "Franck" }
"_id" : ObjectId("S5b2a@f@cfce3684cc3e511fa"), : "Golay", "prenom" : "Jerry" }

" id" : ObjectId("5bb5ef189a2078184e450F06"), : "Thiry", "prenom" : "Sophie" }
" jd" : ObjectId("5bb5ef389a2078184e450f07"), : "Roche", "prenom" : "Didier" }
" id" : ObjectId("S5bb5ef5a9a2078184e450f08"), : "DEVOLDERE", "prenom" : "Jean" }

| Tu es bien gentil toi, mais les résultats contiennent I’attribut « _id » alors que je ne I’ai pas demandé !

C’est exact, I'identifiant d’'un document est toujours retourné sauf si on précise explicitement que I'on ne souhaite
pas le récupérer en précisant le nom du champ suivi de la valeur « 0 » :

db.utilisateurs. -F:md({}_, {_id:@, nom:1, prenom:1})
"nom" : "DEVOLDERE", pr‘enum : "Mickaé&l" }
"nom" : "CHATELOT", "prenom" : "Franck" }

“nom" "Golay", "prenom" : "Jlerry" }

nom

nom

"Thiry", "prenom" : "Sophie" }
"Roche", "prenom" : "Didier" }
"DEVOLDERE", "prenom" : "Jean" }

Nos résultats sont maintenant correctement filtrés.

/ 4 y
L = Réadaptation Introduction & MongoDB | Page 10

4;47

|7 Centre de
Réadaptation

de Mulhouse

Introduction @ MongoDB | Page 11

Find() : Trier les résultats

Tout comme en SQL, MongoDB permet de trier le jeu de résultat avant de le retourner.

Pour trier les résultats d’un requéte, nous utiliserons la méthode « sort() ».

La méthode « sort() » prend 1 parametre qui est un objet JSON précisant la colonne sur laquelle sera effectuée le tri

ainsi que I'ordre de tri (croissant ou décroissant).

Pour illustrer cette méthode, nous allons maintenant trier nos utilisateurs selon leur nom, par ordre croissant :

db.utilisateurs. F:nd({}, {_id:@,nom:1, prenom:1}).sort({{nom:1})

"CHATELOT",

"DEVDLDERE“,
"DEVOLDERE",
"Golay",
"Roche",
"Thiry",

prennm

"prenom”
"prenom"
"prenom"
"prenom"
"prenom”

"Franck" }
"Mickaél" }
“Jean" }

(1] J er_r_y.ll }
"Didier" }
"Sophie" }

db.utilisateurs. Flnd({}, {_id:@,nom:1, prenom:1}).sort({nom:-1})

nom"” : "Thiry",
"Roche",
"Golay",
"DEVOLDERE",
"DEVOLDERE",
"CHATELOT",

"prenom"
"prenom"

"prenom"
"prenom"
"prenom"

"prenom"

"Sophie" }
"Didier" }
"Jerry" }
"Mickaél" }
"Jean" }
"Franck" }

Remarquez la petite différence entre les 2 requétes

La différence se situe au niveau de la valeur de la colonne de tri : « 1 » pour trier par ordre croissant et « -1 » pour

trier par ordre décroissant.

Introduction & MongoDB | Page 11

[]
I//{e/ntre de Introduction @ MongoDB | Page 12
Réadaptation

de Mulhouse

Update() : Mettre a jour des données dans MongoDB

La commande Update permet de mettre a jour un ou plusieurs enregistrements d’une collection.

Cette commande accepte 2 paramétres au minimum et un 3°™® paramétre optionnel.

Comme pour la méthode « find() », le 1°" parametre sert de critere de recherche.

Le 2°™® paramétre de la méthode « update() » va servir a définir la mise a jour a appliquer aux documents

correspondant aux critéres de recherches.

Un 3% paramétre facultatif servira a ajouter des options a la requéte, nous y reviendrons plus tard.

L’état de la collection d’utilisateurs avant les appels a update() :

db.utilisateurs. Flnd({}, {_id:e})

"nom" : "DEVOLDERE", prenum : "Mickaé&l" }

"nom" : "CHATELOT", "prenom" : "Franck" }

nom" : "Golay", "prenom" : “"Jerry", "Origine" : "Pluton" }
nom
nom

"Thiry", "prenom" : "Sophie", "Origine" : "Terre" }
"Roche", "prenom" : "Didier", "Origine" : "Terre" }
nom" : "DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Update() : Ajout & Modification d’une propriété

Mettons maintenant a jour nos utilisateurs. Disons que nous souhaitons ajouter un champ « humain » ayant la
valeur « true » aux utilisateurs dont I'origine est « Terre ».

Exécutons une 1% requéte de mise a jour :

> db.utilisateurs.update({ Origine:"Terre" }, { $set: { Humain:true } })

WiriteResult({ "nMatched" : 1, "nUpserted"” : @, "nModified" : 1 })

Remarquez I'utilisation du mot clé « Sset » dans le second paramétre. « Sset » permet de spécifier les champs a
mettre a jour. Si les champs spécifiés n’existent pas, ils sont tout simplement créés.

Si nous affichons a nouveau notre collection d’utilisateurs, que pouvez-vous remarquer ?

db.utilisateurs. Flnd({}, {_id:@})
"DEVOLDERE", prennm : "Mickaél" }
"CH;F-‘MTEL{!IT“.I "prenom” : "Franck" }

"Golay", "prenom" : "Jerry", "Origine" : "Pluton" }

"Thiry", "prenom" : "Sophie", "Origine" : "Terre", "Humain" : true }
"Roche", "prenom" : "Didier", "Origine" : "Terre" }

"DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre" }

Un seul enregistrement a été mis a jour. Par défaut, MongoDB ne met a jour que le 1¢" enregistrement trouvé
correspondant aux criteres de recherche.

/ 4 v/ :
L = Réadaptation Introduction & MongoDB | Page 12

[]
?Fiimw Introduction @ MongoDB | Page 13
Réadaptation

de Mulhouse

Update() : Mettre a jour plusieurs enregistrements

Pour préciser a MongoDB de mettre a jour tous les enregistrements correspondant aux critéres de recherche, il
faudra renseigner le 3°™ paramétre et attribuer la valeur « true » & un champ nommé « multi » comme dans
I’exemple suivant :

> db.utilisateurs.update({ Origine:"Terre" }, { $set: { Humain:true } }, {multi:true})

WriteResult({{ "nMatched" : 3, "nUpserted" : @, "nModified" : 2 })

Vérifions I’état de notre collection utilisateurs :

db.utilisateurs. Flnd({}, {_id:@})
: "DEVOLDERE", prennm : "Mickaé&l" }
: "CHATELOT", "prenom" : "Franck" }
"Golay", "prenom” : "Jerry", "Origine" : "Pluton" }
"Thiry", "prenom” : "Sophie", "Origine" : "Terre", "Humain" : true }
"Roche", "prenom"” : "Didier", "Origine" : "Terre", "Humain" : true }
"DEVOLDERE", "prenom" : "Jean", "Origine" : "Terre", "Humain" : true }

Notre collection a correctement été mise a jour.

Update() : Suppression d’une propriété

Nous allons maintenant supprimer une propriété. Pour cela, nous utiliserons le mot clé « Sunset » qui s’utilise de la
méme maniére que « Sset ».

Suppression de la propriété « Origine » si sa valeur est différente de « Terre »

> db.utilisateurs.update({ Origine: {%ne: "Terre"} }, { %unset: { Origine:1 } }, {multi:true})
WriteResult({ "nMatched" : 3, "nUpserted" : @, "nModified" : 1 })

Vérifions notre collection :

db.utilisateurs. Flnd({}, {_id:e})
"DEVOLDERE", prennm : "Mickaé&l" }
"CHATELGT", "prenom” : "Franck" }
"Golay", "prenom" : "Jerry" }
"Thiry", "prenom" : "Sophie", "Origine" : "Terre", "Humain" : true }
"Roche”, "prenom" : "Didier", "Origine" : "Terre", "Humain" : true }
"DEVOLDERE", "prenom" : "Jean", "Origine" "Terre", "Humain" : true }

Notre utilisateur « Jerry Golay » qui était originaire de Pluton, ne possede plus la propriété « Origine ».

Introduction & MongoDB | Page 13

Y contre de Introduction @ MongoDB | Page 14
Réadaptation

de Mulhouse

Remove() : Supprimer un document d’une collection

La méthode « Remove() » permet la suppression de documents. C'est I'équivalent de I'instruction « DELETE » en
langage SQL.

Cette méthode prend 1 paramétre qui servira de critere de recherche. Ce parametre se comporte de la méme
maniere que le 1°" parametre des méthodes « find() et update() ».

Par exemple pour supprimer les utilisateurs dont la propriété « Origine » a pour valeur « Terre », nous utiliserons la
commande suivante :

> db.utilisateurs.remove({Origine: "Terre"})

WriteResult({ "nRemoved" : 3 })

/! \ Contrairement a la méthode « update() » qui met a jour un seul enregistrement par défaut, la méthode
« remove() » supprime TOUS les documents correspondant au critére de recherche.
C’est un détail a ne pas négliger !!!

db.utilisateurs.find({}, {_id:@})
"nom" : "DEVOLDERE", "prenom" : "Micka&l" }

"nom" : "CHATELOT", "prenom" : "Franck" }

nom "Golay", "prenom" : "Jerry" }

Ici, tous nos utilisateurs ayant La propriété « Origine » ayant la valeur »Terre » ont été supprimés de notre collection.

Résumé et conclusion

De plus en plus utilisé, notamment dans le « Big Data », MongoDB est I'un des moteurs NoSQL les plus utilisés

- SQL signifie « Structured Query Langage »

- NoSQL signifie « Not Only SQL »

- MongoDB est un moteur de base de données NoSQL

- MongoDB est schemaless

- MongoDB utilise le format de données JSON

- Les paramétres des fonctions MongoDB sont des objets JSON

- Les résultats retournés par MongoDB sont des objets JSON

- La commande MongoDB « find() » est I'équivalent de I'instruction SQL « SELECT FROM »

- Lacommande MongoDB « insert() » est I’équivalent de I'instruction SQL « INSERT INTO »
- Lacommande MongoDB « update() » est I'équivalent de I'instruction SQL « UPDATE SET »
- La commande MongoDB « remove() » est I’équivalent de I'instruction SQL « DELETE FROM »

)/~ .
C ¥ 4 Réadaptation Introduction & MongoDB | Page 14

W eontre ae Introduction @ MongoDB | Page 15
Réadaptation

de Mulhouse

) /_ (]
/& Réadaptation Introduction & MongoDB | Page 15

[]
,ﬁ/{ﬁ; do Introduction @ MongoDB | Page 16
Réadaptation

de Mulhouse

--- FIN DU DOCUMENT ---

La reproduction partielle ou intégrale du présent document sur un support, quel qu’il soit, est formellement interdite
sans l'accord écrit et préalable du Centre de Réadaptation de Mulhouse.

Légende des icones |

Information complémentaire

Point d’attention particulier

Intervention du formateur possible

agp e

Lien vers une ressource externe

Historique du document

Auteur Date Observations
Mickaél DEVOLDERE 28/09/2018 Création du document
Crédits

/9 4
m,{&m_ Réadaptation Introduction @ MongoDB | Page 16

de Mulhouse

