
V.4. Procédures stockées

Les procédures stockées sont disponibles depuis la version 5 de MySQL, et permettent d’auto-
matiser des actions, qui peuvent être très complexes.

Une procédure stockée est en fait une série d’instructions SQL désignée par un nom. Lorsque
l’on crée une procédure stockée, on l’enregistre dans la base de données que l’on utilise, au
même titre qu’une table par exemple. Une fois la procédure créée, il est possible d’appeler
celle-ci, par son nom. Les instructions de la procédure sont alors exécutées.

Contrairement aux requêtes préparées, qui ne sont gardées en mémoire que pour la session
courante, les procédures stockées sont, comme leur nom l’indique, stockées de manière
durable, et font bien partie intégrante de la base de données dans laquelle elles sont
enregistrées.

V.4.1. Création et utilisation d’une procédure

Voyons tout de suite la syntaxe à utiliser pour créer une procédure :

 CREATE PROCEDURE nom_procedure ([parametre1 [, parametre2, ...]])
 corps de la procédure;

Décodons tout ceci.

— CREATE PROCEDURE : sans surprise, il s’agit de la commande à exécuter pour créer une
procédure. On fait suivre cette commande du nom que l’on veut donner à la nouvelle
procédure.

— ([parametre1 [, parametre2, ...]]) : après le nom de la procédure viennent des
parenthèses. Celles-ci sont obligatoires ! À l’intérieur de ces parenthèses, on définit
les éventuels paramètres de la procédure. Ces paramètres sont des variables qui pourront
être utilisées par la procédure.

— corps de la procédure : c’est là que l’on met le contenu de la procédure, ce qui va être
exécuté lorsqu’on lance la procédure. Cela peut être soit une seule requête, soit un
bloc d’instructions.

i
Les noms des procédures stockées ne sont pas sensibles à la casse.

370



V. Sécuriser et automatiser ses actions

V.4.1.1. Procédure avec une seule requête

Voici une procédure toute simple, sans paramètres, qui va juste afficher toutes les races d’ani-
maux.

 CREATE PROCEDURE afficher_races_requete() -- pas de paramètres dans
les parenthèses

 SELECT id, nom, espece_id, prix FROM Race;

V.4.1.2. Procédure avec un bloc d’instructions

Pour délimiter un bloc d’instructions (qui peut donc contenir plus d’une instruction), on utilise
les mots BEGIN et END.

 BEGIN
 -- Série d'instructions
 END;

Exemple : reprenons la procédure précédente, mais en utilisant un bloc d’instructions.

 CREATE PROCEDURE afficher_races_bloc() -- pas de paramètres dans
les parenthèses

 BEGIN
 SELECT id, nom, espece_id, prix FROM Race;
 END;

Malheureusement…

 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '' at line 3

?
Que s’est-il passé ? La syntaxe semble correcte…

Les mots-clés sont bons, il n’y a pas de paramètres mais on a bien mis les parenthèses, BEGIN
et END sont tous les deux présents. Tout cela est correct, et pourtant, nous avons visiblement
omis un détail.

Peut-être aurez-vous compris que le problème se situe au niveau du caractère ; : en effet,
un ; termine une instruction SQL. Or, on a mis un ; à la suite de SELECT * FROM Race;.
Cela semble logique, mais pose problème puisque c’est le premier ; rencontré par l’instruction
CREATE PROCEDURE, qui naturellement pense devoir s’arrêter là. Ceci déclenche une erreur

371



V. Sécuriser et automatiser ses actions

puisqu’en réalité, l’instruction CREATE PROCEDURE n’est pas terminée : le bloc d’instructions
n’est pas complet !

?
Comment faire pour écrire des instructions à l’intérieur d’une instruction alors ?

Il suffit de changer le délimiteur !

V.4.1.3. Délimiteur

Ce qu’on appelle délimiteur, c’est tout simplement (par défaut), le caractère ; . C’est-à-dire le
caractère qui permet de délimiter les instructions. Or, il est tout à fait possible de définir le
délimiteur manuellement, de manière à ce que ; ne signifie plus qu’une instruction se termine.
Auquel cas le caractère ; pourra être utilisé à l’intérieur d’une instruction, et donc pourra
être utilisé dans le corps d’une procédure stockée.

Pour changer le délimiteur, il suffit d’utiliser cette commande :

 DELIMITER |

À partir de maintenant, vous devrez utiliser le caractère || | pour signaler la fin d’une instruction. || ; ne
sera plus compris comme tel par votre session.

 SELECT 'test'|

test

test

i
DELIMITER n’agit que pour la session courante.

Vous pouvez utiliser le (ou les) caractère(s) de votre choix comme délimiteur. Bien entendu, il
vaut mieux choisir quelque chose qui ne risque pas d’être utilisé dans une instruction. Bannissez
donc les lettres, chiffres, @ (qui servent pour les variables utilisateurs) et les \ (qui servent
à échapper les caractères spéciaux).

Les deux délimiteurs suivants sont les plus couramment utilisés :

 DELIMITER //
 DELIMITER |

372



V. Sécuriser et automatiser ses actions

Bien ! Ceci étant réglé, reprenons !

V.4.1.4. Création d’une procédure stockée

 DELIMITER | -- On change le délimiteur
 CREATE PROCEDURE afficher_races() -- toujours pas de

paramètres, toujours des parenthèses
 BEGIN
 SELECT id, nom, espece_id, prix
 FROM Race; -- Cette fois, le ; ne nous

embêtera pas
 END| -- Et on termine bien sûr la

commande CREATE PROCEDURE par notre nouveau délimiteur

Cette fois-ci, tout se passe bien. La procédure a été créée.

i
Lorsqu’on utilisera la procédure, quel que soit le délimiteur défini par DELIMITER, les
instructions à l’intérieur du corps de la procédure seront bien délimitées par ; . En effet,
lors de la création d’une procédure, celle-ci est interprétée – on dit aussi ”parsée” – par le
serveur MySQL et le parseur des procédures stockées interprétera toujours ; comme
délimiteur. Il n’est pas influencé par la commande DELIMITER.

Les procédures stockées n’étant que très rarement composées d’une seule instruction, on utilise
presque toujours un bloc d’instructions pour le corps de la procédure.

V.4.1.5. Utilisation d’une procédure stockée

Pour appeler une procédure stockée, c’est-à-dire déclencher l’exécution du bloc d’instructions
constituant le corps de la procédure, il faut utiliser le mot-clé CALL, suivi du nom de la procédure
appelée, puis de parenthèses (avec éventuellement des paramètres).

 CALL afficher_races()| -- le délimiteur est toujours | !!!

id nom espece_id prix

1 Berger allemand 1 485.00

2 Berger blanc suisse 1 935.00

3 Singapura 2 985.00

4 Bleu russe 2 835.00

373



V. Sécuriser et automatiser ses actions

5 Maine coon 2 735.00

7 Sphynx 2 1235.00

8 Nebelung 2 985.00

9 Rottweiller 1 600.00

Le bloc d’instructions a bien été exécuté (un simple SELECT dans ce cas).

V.4.2. Les paramètres d’une procédure stockée

Maintenant que l’on sait créer une procédure et l’appeler, intéressons-nous aux paramètres.

V.4.2.1. Sens des paramètres

Un paramètre peut être de trois sens différents : entrant (IN), sortant (OUT), ou les deux
(INOUT).

— IN : c’est un paramètre ”entrant”. C’est-à-dire qu’il s’agit d’un paramètre dont la valeur
est fournie à la procédure stockée. Cette valeur sera utilisée pendant la procédure (pour
un calcul ou une sélection par exemple).

— OUT : il s’agit d’un paramètre ”sortant”, dont la valeur va être établie au cours de la
procédure et qui pourra ensuite être utilisé en dehors de cette procédure.

— INOUT : un tel paramètre sera utilisé pendant la procédure, verra éventuellement sa
valeur modifiée par celle-ci, et sera ensuite utilisable en dehors.

V.4.2.2. Syntaxe

Lorsque l’on crée une procédure avec un ou plusieurs paramètres, chaque paramètre est défini
par trois éléments.

— Son sens : entrant, sortant, ou les deux. Si aucun sens n’est donné, il s’agira d’un
paramètre IN par défaut.

— Son nom : indispensable pour le désigner à l’intérieur de la procédure.
— Son type : INT, VARCHAR(10),…

V.4.2.3. Exemples

V.4.2.3.1. Procédure avec un seul paramètre entrant

Voici une procédure qui, selon l’id de l’espèce qu’on lui passe en paramètre, affiche les différentes
races existant pour cette espèce.

374



V. Sécuriser et automatiser ses actions

 DELIMITER | --
Facultatif si votre délimiteur est toujours |

 CREATE PROCEDURE afficher_race_selon_espece (IN p_espece_id INT)
-- Définition du paramètre p_espece_id

 BEGIN
 SELECT id, nom, espece_id, prix
 FROM Race
 WHERE espece_id = p_espece_id; --

Utilisation du paramètre
 END |
 DELIMITER ; --

On remet le délimiteur par défaut

i
Notez que, suite à la création de la procédure, j’ai remis le délimiteur par défaut ; .
Ce n’est absolument pas obligatoire, vous pouvez continuer à travailler avec ||||| si vous
préférez.

Pour l’utiliser, il faut donc passer une valeur en paramètre de la procédure. Soit directement,
soit par l’intermédiaire d’une variable utilisateur.

 CALL afficher_race_selon_espece(1);
 SET @espece_id := 2;
 CALL afficher_race_selon_espece(@espece_id);

id nom espece_id prix

1 Berger allemand 1 485.00

2 Berger blanc suisse 1 935.00

9 Rottweiller 1 600.00

id nom espece_id prix

3 Singapura 2 985.00

4 Bleu russe 2 835.00

5 Maine coon 2 735.00

7 Sphynx 2 1235.00

8 Nebelung 2 985.00

Le premier appel à la procédure affiche bien toutes les races de chiens, et le second, toutes les

375



V. Sécuriser et automatiser ses actions

races de chats.

!
J’ai fait commencer le nom du paramètre par ”p”. Ce n’est pas obligatoire, mais je vous
conseille de le faire systématiquement pour vos paramètres afin de les distinguer facilement.
Si vous ne le faites pas, soyez extrêmement prudents avec les noms que vous leur donnez.
Par exemple, dans cette procédure, si on avait nommé le paramètre _espece_id, cela aurait
posé problème, puisque espece_id est aussi le nom d’une colonne dans la table Race.
Qui plus est, c’est le nom de la colonne dont on se sert dans la condition WHERE. En cas
d’ambiguïté, MySQL interprète l’élément comme étant le paramètre, et non la colonne.
On aurait donc eu WHERE 1 = 1 par exemple, ce qui est toujours vrai.

V.4.2.3.2. Procédure avec deux paramètres, un entrant et un sortant

Voici une procédure assez similaire à la précédente, si ce n’est qu’elle n’affiche pas les races
existant pour une espèce, mais compte combien il y en a, puis stocke cette valeur dans un
paramètre sortant.

 DELIMITER |
 CREATE PROCEDURE compter_races_selon_espece (p_espece_id INT, OUT

p_nb_races INT)
 BEGIN
 SELECT COUNT(*) INTO p_nb_races
 FROM Race
 WHERE espece_id = p_espece_id;
 END |
 DELIMITER ;

Aucun sens n’a été précisé pour p_espece_id, il est donc considéré comme un paramètre
entrant.

SELECT COUNT(*) INTO p_nb_races. Voila qui est nouveau ! Comme vous l’avez sans doute
deviné, le mot-clé INTO placé après la clause SELECT permet d’assigner les valeurs sélec-
tionnées par ce SELECT à des variables, au lieu de simplement afficher les valeurs sélectionnées.
Dans le cas présent, la valeur du COUNT(*) est assignée à p_nb_races.

Pour pouvoir l’utiliser, il est nécessaire que le SELECT ne renvoie qu’une seule ligne, et il faut
que le nombre de valeurs sélectionnées et le nombre de variables à assigner soient égaux :

Exemple 1 : SELECT ... INTO correct avec deux valeurs

 SELECT id, nom INTO @var1, @var2
 FROM Animal
 WHERE id = 7;
 SELECT @var1, @var2;

376



V. Sécuriser et automatiser ses actions

@var1 @var2

7 Caroline

Le SELECT ... INTO n’a rien affiché, mais a assigné la valeur 7 à @var1, et la valeur 'Caroline'
à @var2, que nous avons ensuite affichées avec un autre SELECT.

Exemple 2 : SELECT ... INTO incorrect, car le nombre de valeurs sélectionnées (deux) n’est
pas le même que le nombre de variables à assigner (une).

 SELECT id, nom INTO @var1
 FROM Animal
 WHERE id = 7;

 ERROR 1222 (21000): The used SELECT statements have a different number of columns

Exemple 3 : SELECT ... INTO incorrect, car il y a plusieurs lignes de résultats.

 SELECT id, nom INTO @var1, @var2
 FROM Animal
 WHERE espece_id = 5;

 ERROR 1172 (42000): Result consisted of more than one row

Revenons maintenant à notre nouvelle procédure compter_races_selon_espece() et exécutons-la.
Pour cela, il va falloir lui passer deux paramètres : p_espece_id et p_nb_races. Le premier
ne pose pas de problème, il faut simplement donner un nombre, soit directement soit par
l’intermédiaire d’une variable, comme pour la procédure afficher_race_selon_espece(). Par
contre, pour le second, il s’agit d’un paramètre sortant. Il ne faut donc pas donner une valeur,
mais quelque chose dont la valeur sera déterminée par la procédure (grâce au SELECT ... INTO),
et qu’on pourra utiliser ensuite : une variable utilisateur !

 CALL compter_races_selon_espece (2, @nb_races_chats);

Et voilà ! La variable @nb_races_chats contient maintenant le nombre de races de chats. Il suffit
de l’afficher pour vérifier.

377



V. Sécuriser et automatiser ses actions

 SELECT @nb_races_chats;

@nb_races_chats

5

V.4.2.3.3. Procédure avec deux paramètres, un entrant et un entrant-sortant

Nous allons créer une procédure qui va servir à calculer le prix que doit payer un client. Pour
cela, deux paramètres sont nécessaires : l’animal acheté (paramètre IN), et le prix à payer
(paramètre INOUT). La raison pour laquelle le prix est un paramètre à la fois entrant et sortant
est qu’on veut pouvoir, avec cette procédure, calculer simplement un prix total dans le cas où
un client achèterait plusieurs animaux. Le principe est simple : si le client n’a encore acheté
aucun animal, le prix est de 0. Pour chaque animal acheté, on appelle la procédure, qui ajoute
au prix total le prix de l’animal en question. Une fois n’est pas coutume, commençons par voir
les requêtes qui nous serviront à tester la procédure. Cela devrait clarifier le principe. Je vous
propose d’essayer ensuite d’écrire vous-mêmes la procédure correspondante avant de regarder à
quoi elle ressemble.

 SET @prix = 0; -- On initialise @prix à 0

 CALL calculer_prix (13, @prix); -- Achat de Rouquine
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (24, @prix); -- Achat de Cartouche
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (42, @prix); -- Achat de Bilba
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (75, @prix); -- Achat de Mimi
 SELECT @prix AS total;

On passe donc chaque animal acheté tour à tour à la procédure, qui modifie le prix en conséquence.
Voici quelques indices et rappels qui devraient vous aider à écrire vous-mêmes la procédure.

— Le prix n’est pas un nombre entier.
— Il est possible de faire des additions directement dans un SELECT.
— Pour déterminer le prix, il faut utiliser la fonction COALESCE().

Réponse :

Contenu masqué n°49

378



V. Sécuriser et automatiser ses actions

Et voici ce qu’affichera le code de test :

prix_intermediaire

485.00

prix_intermediaire

685.00

prix_intermediaire

1420.00

total

1430.00

Voilà qui devrait nous simplifier la vie. Et nous n’en sommes qu’au début des possibilités des
procédures stockées !

V.4.3. Suppression d’une procédure

Vous commencez à connaître cette commande : pour supprimer une procédure, on utilise DROP
(en précisant qu’il s’agit d’une procédure).

Exemple :

 DROP PROCEDURE afficher_races;

Pour rappel, les procédures stockées ne sont pas détruites à la fermeture de la session mais
bien enregistrées comme un élément de la base de données, au même titre qu’une table par
exemple.

Notons encore qu’il n’est pas possible de modifier une procédure directement. La seule façon de
modifier une procédure existante est de la supprimer puis de la recréer avec les modifications.

i
Il existe bien une commande ALTER PROCEDURE, mais elle ne permet de changer ni les
paramètres, ni le corps de la procédure. Elle permet uniquement de changer certaines
caractéristiques de la procédure, et ne sera pas couverte dans ce cours.

379



V. Sécuriser et automatiser ses actions

V.4.4. Avantages, inconvénients et usage des procédures
stockées

V.4.4.1. Avantages

Les procédures stockées permettent de réduire les allers-retours entre le client et le
serveur MySQL. En effet, si l’on englobe en une seule procédure un processus demandant
l’exécution de plusieurs requêtes, le client ne communique qu’une seule fois avec le serveur (pour
demander l’exécution de la procédure) pour exécuter la totalité du traitement. Cela permet
donc un certain gain en performance.

Elles permettent également de sécuriser une base de données. Par exemple, il est possible de
restreindre les droits des utilisateurs de façon à ce qu’ils puissent uniquement exécuter
des procédures. Finis les DELETE dangereux ou les UPDATE inconsidérés. Chaque requête
exécutée par les utilisateurs est créée et contrôlée par l’administrateur de la base de données
par l’intermédiaire des procédures stockées.

Cela permet ensuite de s’assurer qu’un traitement est toujours exécuté de la même
manière, quelle que soit l’application/le client qui le lance. Il arrive par exemple qu’une
même base de données soit exploitée par plusieurs applications, lesquelles peuvent être écrites
avec différents langages. Si on laisse chaque application avoir son propre code pour un même
traitement, il est possible que des différences apparaissent (distraction, mauvaise communication,
erreur ou autre). Par contre, si chaque application appelle la même procédure stockée, ce risque
disparaît.

V.4.4.2. Inconvénients

Les procédures stockées ajoutent évidemment à la charge sur le serveur de données.
Plus on implémente de logique de traitement directement dans la base de données, moins le
serveur est disponible pour son but premier : le stockage de données.

Par ailleurs, certains traitements seront toujours plus simples et plus courts à écrire (et donc à
maintenir) s’ils sont développés dans un langage informatique adapté. A fortiori lorsqu’il s’agit
de traitements complexes. La logique qu’il est possible d’implémenter avec MySQL
permet de nombreuses choses, mais reste assez basique.

Enfin, la syntaxe des procédures stockées diffère beaucoup d’un SGBD à un autre.
Par conséquent, si l’on désire en changer, il faudra procéder à un grand nombre de corrections
et d’ajustements.

V.4.4.3. Conclusion et usage

Comme souvent, tout est question d’équilibre. Il faut savoir utiliser des procédures quand c’est
utile, quand on a une bonne raison de le faire. Il ne sert à rien d’en abuser. Pour une base
contenant des données ultrasensibles, une bonne gestion des droits des utilisateurs couplée à
l’usage de procédures stockées peut se révéler salutaire. Pour une base de données destinée
à être utilisée par plusieurs applications différentes, on choisira de créer des procédures pour

380



V. Sécuriser et automatiser ses actions

les traitements généraux et/ou pour lesquels la moindre erreur peut poser de gros problèmes.
Pour un traitement long, impliquant de nombreuses requêtes et une logique simple, on peut
sérieusement gagner en performance en le faisant dans une procédure stockée (a fortiori si ce
traitement est souvent lancé).

À vous de voir quelles procédures sont utiles pour votre application et vos besoins.

V.4.4.4. En résumé
— Une procédure stockée est un ensemble d’instructions que l’on peut exécuter sur

commande.
— Une procédure stockée est un objet de la base de données stocké de manière durable,

au même titre qu’une table. Elle n’est pas supprimée à la fin de la session comme l’est
une requête préparée.

— On peut passer des paramètres à une procédure stockée, qui peuvent avoir trois sens :
IN (entrant), OUT (sortant) ou INOUT (les deux).

— SELECT ... INTO permet d’assigner des données sélectionnées à des variables ou des
paramètres, à condition que le SELECT ne renvoie qu’une seule ligne, et qu’il y ait autant
de valeurs sélectionnées que de variables à assigner.

— Les procédures stockées peuvent permettre de gagner en performance en diminuant les
allers-retours entre le client et le serveur. Elles peuvent également aider à sécuriser une
base de données et à s’assurer que les traitements sensibles soient toujours exécutés
de la même manière.

— Par contre, elle ajoute à la charge du serveur et sa syntaxe n’est pas toujours
portable d’un SGBD à un autre.

Contenumasqué

Contenumasqué n°49

 DELIMITER |

 CREATE PROCEDURE calculer_prix (IN p_animal_id INT, INOUT p_prix

DECIMAL(7,2))
 BEGIN
 SELECT p_prix + COALESCE(Race.prix, Espece.prix) INTO p_prix
 FROM Animal
 INNER JOIN Espece ON Espece.id = Animal.espece_id
 LEFT JOIN Race ON Race.id = Animal.race_id
 WHERE Animal.id = p_animal_id;
 END |

 DELIMITER ;

381



V. Sécuriser et automatiser ses actions

Retourner au texte.

382


	V Sécuriser et automatiser ses actions
	V.4 Procédures stockées
	V.4.1 Création et utilisation d'une procédure
	V.4.1.1 Procédure avec une seule requête
	V.4.1.2 Procédure avec un bloc d'instructions
	V.4.1.3 Délimiteur
	V.4.1.4 Création d'une procédure stockée
	V.4.1.5 Utilisation d'une procédure stockée

	V.4.2 Les paramètres d'une procédure stockée
	V.4.2.1 Sens des paramètres
	V.4.2.2 Syntaxe
	V.4.2.3 Exemples

	V.4.3 Suppression d'une procédure
	V.4.4 Avantages, inconvénients et usage des procédures stockées
	V.4.4.1 Avantages
	V.4.4.2 Inconvénients
	V.4.4.3 Conclusion et usage
	V.4.4.4 En résumé

	Contenu masqué



