
V.1. Transactions

Pour commencer cette partie, nous allons voir ce que sont les transactions, à quoi elles servent
exactement, et comment les utiliser avec MySQL.

Les transactions sont une fonctionnalité absolument indispensable, permettant de sécuriser une
application utilisant une base de données. Sans transactions, certaines opérations risqueraient
d’être à moitié réalisées, et la moindre erreur, la moindre interruption pourrait avoir des
conséquences énormes. En effet, les transactions permettent de regrouper des requêtes dans des
blocs, et de faire en sorte que tout le bloc soit exécuté en une seule fois, cela afin de préserver
l’intégrité des données de la base.

Les transactions ont été implémentées assez tard dans MySQL, et qui plus est, elles ne sont
pas utilisables pour tous les types de tables. C’est d’ailleurs un des principaux arguments des
détracteurs de MySQL.

V.1.0.1. Etat actuel de la base de données

Note : les tables de test ne sont pas reprises.

Contenu masqué n°46

V.1.1. Principe

Une transaction, c’est un ensemble de requêtes qui sont exécutées en un seul bloc. Ainsi,
si une des requêtes du bloc échoue, on peut décider d’annuler tout le bloc de requêtes (ou de
quand même valider les requêtes qui ont réussi).

?
À quoi ça sert ?

Imaginez que Monsieur Durant fasse un virement de 300 euros à Monsieur Dupont via sa banque
en ligne. Il remplit toutes les petites cases du virement, puis valide. L’application de la banque
commence à traiter le virement quand soudain, une violente panne de courant provoque l’arrêt
des serveurs de la banque.

Deux jours plus tard, Monsieur Durant reçoit un coup de fil de Monsieur Dupont, très énervé,
qui lui demande pourquoi le paiement convenu n’a toujours pas été fait. Intrigué, Monsieur
Durant va vérifier son compte, et constate qu’il a bien été débité de 300 euros.

309

V. Sécuriser et automatiser ses actions

?
Mais que s’est-il donc passé ?

Normalement, le traitement d’un virement est plutôt simple, deux étapes suffisent :

— étape 1 : on retire le montant du virement du compte du donneur d’ordre ;
— étape 2 : on ajoute le montant du virement au compte du bénéficiaire.

Seulement voilà, pas de chance pour Monsieur Durant, la panne de courant qui a éteint les
serveurs est survenue pile entre l’étape 1 et l’étape 2. Du coup, son compte a été débité, mais le
compte de Monsieur Dupont n’a jamais été crédité.

La banque de Monsieur Durant n’utilisait pas les transactions. Si c’était le cas, la seconde
requête du traitement n’ayant jamais été exécutée, la première requête n’aurait jamais été
validée.

V.1.1.0.1. Comment se déroule une transaction?

Voici un schéma qui devrait vous éclairer sur le principe des transactions.

310

V. Sécuriser et automatiser ses actions

Figure V.1.1. – Schéma d’une transaction

— On démarre une transaction.
— On exécute les requêtes désirées une à une.
— Si une des requêtes échoue, on annule toutes les requêtes, et on termine la transaction.
— Par contre, si à la fin des requêtes, tout s’est bien passé, on valide tous les changements,

et on termine la transaction.

311

V. Sécuriser et automatiser ses actions

— Si le traitement est interrompu (entre deux requêtes par exemple), les changements
ne sont jamais validés, et donc les données de la base restent les mêmes qu’avant la
transaction.

V.1.1.1. Support des transactions

Il n’est pas possible d’utiliser les transactions sur n’importe quelle table. Pour les supporter, une
table doit être transactionnelle, ce qui, avec MySQL, est défini par le moteur de stockage
utilisé pour la table.

Rappelez-vous, nous avons vu dans le chapitre sur la création des tables qu’il existait différents
moteurs de stockage possibles avec MySQL, dont les plus connus sont MyISAM et InnoDB.

MyISAM ne supportant pas les contraintes de clés étrangères, nos tables ont été créées avec le
moteur InnoDB, ce qui tombe plutôt bien pour la suite de ce chapitre. En effet :

— les tables MyISAM sont non-transactionnelles, donc ne supportent pas les transactions ;
— les tables InnoDB sont transactionnelles, donc supportent les transactions.

V.1.2. Syntaxe et utilisation

V.1.2.0.1. Vocabulaire

Lorsque l’on valide les requêtes d’une transaction, on dit aussi que l’on commite les changements.
À l’inverse, l’annulation des requêtes s’appelle un rollback.

V.1.2.0.2. Comportement par défaut

Vous l’aurez compris, par défaut MySQL ne travaille pas avec les transactions. Chaque requête
effectuée est directement commitée (validée). On ne peut pas revenir en arrière. On peut
donc en fait considérer que chaque requête constitue une transaction, qui est automatiquement
commitée. Par défaut, MySQL est donc en mode ”autocommit”.

Pour quitter ce mode, il suffit de lancer la requête suivante :

 SET autocommit=0;

Une fois que vous n’êtes plus en autocommit, chaque modification de donnée devra être commitée
pour prendre effet. Tant que vos modifications ne sont pas validées, vous pouvez à tout moment
les annuler (faire un rollback).

V.1.2.1. Valider/annuler les changements

Les commandes pour commiter et faire un rollback sont relativement faciles à retenir :

312

http://zestedesavoir.com/tutoriels/688/administrez-vos-bases-de-donnees-avec-mysql/948/mysql-et-les-bases-du-langage-sql/3929/creation-de-tables/#3-les-moteurs-de-tables

V. Sécuriser et automatiser ses actions

 COMMIT; -- pour valider les requêtes
 ROLLBACK; -- pour annuler les requêtes

V.1.2.1.1. Exemples de transactions enmode non-autocommit

Si ce n’est pas déjà fait, changez le mode par défaut de MySQL grâce à la commande que nous
venons de voir.

Première expérience : annulation des requêtes.

Exécutez ces quelques requêtes :

 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Baba', 5, '2012-02-13 15:45:00', 'F');
 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Bibo', 5, '2012-02-13 15:48:00', 'M');
 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Buba', 5, '2012-02-13 18:32:00', 'F'); -- Insertion de 3

rats bruns

 UPDATE Espece
 SET prix = 20
 WHERE id = 5; -- Les rats bruns coûtent maintenant 20 euros au

lieu de 10

Faites maintenant un SELECT sur les tables Espece et Animal.

 SELECT *
 FROM Animal
 WHERE espece_id = 5;

 SELECT *
 FROM Espece
 WHERE id = 5;

Les changements faits sont bien visibles. Les rats bruns valent maintenant 20 euros, et nos
trois nouvelles bestioles ont bien été insérées. Cependant, un simple rollback va annuler ces
changements.

 ROLLBACK;

Nos rats coûtent à nouveau 10 euros et Baba, Bibo et Buba ont disparu.

313

V. Sécuriser et automatiser ses actions

Deuxième expérience : Interruption de la transaction.

Exécutez à nouveau les trois requêtes INSERT et la requête UPDATE. Ensuite, quittez votre client
MySQL (fermez simplement la fenêtre, ou tapez quit ou exit).

Reconnectez-vous et vérifiez vos données : les rats valent 10 euros, et Baba, Bibo et Buba
n’existent pas. Les changements n’ont pas été commités, c’est comme s’il ne s’était rien passé !

!
Le mode autocommit est de nouveau activé ! Le fait de faire SET autocommit = 0; n’est
valable que pour la session courante. Or, en ouvrant une nouvelle connexion, vous avez
créé une nouvelle session. Désactivez donc à nouveau ce mode.

Troisième expérience : validation et annulation.

Exécutez la séquence de requêtes suivante :

 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Baba', 5, '2012-02-13 15:45:00', 'F');
 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Bibo', 5, '2012-02-13 15:48:00', 'M');
 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Buba', 5, '2012-02-13 18:32:00', 'F'); -- Insertion de 3

rats bruns

 COMMIT;

 UPDATE Espece
 SET prix = 20
 WHERE id = 5; -- Les rats valent 20 euros

 ROLLBACK;

Si vous n’avez pas oublié de réactiver le mode non-autocommit, vous avez maintenant trois
nouveaux rats bruns (les requêtes d’insertion ayant été validées), et ils ne valent toujours que 10
euros chacun (la modification de l’espèce ayant été annulée).

Quatrième expérience : visibilité des changements non-commités.

Exécutez la requête suivante :

 UPDATE Animal
 SET commentaires = 'Queue coupée'
 WHERE nom = 'Bibo' AND espece_id = 5;

Ensuite, tout en laissant ce client MySQL ouvert, ouvrez-en un deuxième. Connectez-vous
comme d’habitude à la base de données elevage. Vous avez maintenant deux sessions ouvertes,
connectées à votre base de données. Sélectionnez les rats bruns.

314

V. Sécuriser et automatiser ses actions

 SELECT id, sexe, nom, commentaires, espece_id, race_id
 FROM Animal
 WHERE espece_id = 5;

id sexe nom commen-
taires espece_id race_id

69 F Baba NULL 5 NULL

70 M Bibo NULL 5 NULL

71 F Buba NULL 5 NULL

Les commentaires de Bibo sont toujours vides. Les changements non-commités ne sont donc pas
visibles à l’extérieur de la transaction qui les a faits. En particulier, une autre session n’a pas
accès à ces changements.

Annulez la modification de Bibo dans la première session avec un ROLLBACK. Vous pouvez
fermer la seconde session.

V.1.2.2. Démarrer explicitement une transaction

En désactivant le mode autocommit, en réalité, on démarre une transaction. Et chaque fois que
l’on fait un rollback ou un commit (ce qui met fin à la transaction), une nouvelle transaction est
créée automatiquement, et ce tant que la session est ouverte.

Il est également possible de démarrer explicitement une transaction, auquel cas on peut laisser
le mode autocommit activé, et décider au cas par cas des requêtes qui doivent être faites dans
une transaction.

Repassons donc en mode autocommit :

 SET autocommit=1;

Pour démarrer une transaction, il suffit de lancer la commande suivante :

 START TRANSACTION;

i
Avec MySQL, il est également possible de démarrer une transaction avec BEGIN ou BEGIN
WORK. Cependant, il est conseillé d’utiliser plutôt START TRANSACTION, car il s’agit de la
commande SQL standard.

315

V. Sécuriser et automatiser ses actions

Une fois la transaction ouverte, les requêtes devront être validées pour prendre effet. Attention
au fait qu’un COMMIT ou un ROLLBACK met fin automatiquement à la transaction, donc les
commandes suivantes seront à nouveau commitées automatiquement si une nouvelle transaction
n’est pas ouverte.

V.1.2.2.1. Exemples de transactions enmode autocommit

 -- Insertion d'un nouveau rat brun, plus vieux
 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Momy', 5, '2008-02-01 02:25:00', 'F');

 -- Ouverture d'une transaction
 START TRANSACTION;

 -- La nouvelle rate est la mère de Buba et Baba
 UPDATE Animal
 SET mere_id = LAST_INSERT_ID()
 WHERE espece_id = 5
 AND nom IN ('Baba', 'Buba');

 -- On annule les requêtes de la transaction, ce qui termine

celle-ci
 ROLLBACK;

 -- La nouvelle rate est la mère de Bibo
 UPDATE Animal
 SET mere_id = LAST_INSERT_ID()
 WHERE espece_id = 5
 AND nom = 'Bibo';

 -- Nouvelle transaction
 START TRANSACTION;

 -- Suppression de Buba
 DELETE FROM Animal
 WHERE espece_id = 5
 AND nom = 'Buba';

 -- On valide les requêtes de la transaction, ce qui termine

celle-ci
 COMMIT;

Si vous avez bien suivi, vous devriez savoir les changements qui ont été faits.

Contenu masqué n°47

316

V. Sécuriser et automatiser ses actions

id nom espece_id mere_id

69 Baba 5 NULL

70 Bibo 5 72

72 Momy 5 NULL

V.1.2.3. Jalon de transaction

Lorsque l’on travaille dans une transaction, et que l’on constate que certaines requêtes posent
problème, on n’a pas toujours envie de faire un rollback depuis le début de la transaction,
annulant toutes les requêtes alors qu’une partie aurait pu être validée. Il n’est pas possible
de démarrer une transaction à l’intérieur d’une transaction. Par contre, on peut poser
des jalons de transaction. Il s’agit de points de repère, qui permettent d’annuler toutes
les requêtes exécutées depuis ce jalon, et non toutes les requêtes de la transaction.

V.1.2.3.1. Syntaxe

Trois nouvelles commandes suffisent pour pouvoir utiliser pleinement les jalons :

 SAVEPOINT nom_jalon; -- Crée un jalon avec comme nom "nom_jalon"

 ROLLBACK [WORK] TO [SAVEPOINT] nom_jalon; -- Annule les requêtes

exécutées depuis le jalon "nom_jalon", WORK et SAVEPOINT ne
sont pas obligatoires

 RELEASE SAVEPOINT nom_jalon; -- Retire le jalon "nom_jalon" (sans

annuler, ni valider les requêtes faites depuis)

Exemple : exécutez les requêtes suivantes.

 START TRANSACTION;

 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Popi', 5, '2007-03-11 12:45:00', 'M');

 SAVEPOINT jalon1;

 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Momo', 5, '2007-03-12 05:23:00', 'M');

 ROLLBACK TO SAVEPOINT jalon1;

317

V. Sécuriser et automatiser ses actions

 INSERT INTO Animal (nom, espece_id, date_naissance, sexe)
 VALUES ('Mimi', 5, '2007-03-12 22:03:00', 'F');

 COMMIT;

On n’utilise qu’une seule transaction, on valide à la fin, et pourtant la seconde insertion n’a pas
été faite au final, puisqu’elle a été annulée grâce au jalon. Seuls Popi et Mimi existent.

 SELECT id, sexe, date_naissance, nom, espece_id, mere_id, pere_id
 FROM Animal
 WHERE espece_id = 5;

id sexe date_nais-
sance

nom espece_id mere_id pere_id

69 F 2012-02-13
15:45:00 Baba 5 NULL NULL

70 M 2012-02-13
15:48:00 Bibo 5 72 NULL

72 F 2008-02-01
02:25:00

Momy 5 NULL NULL

73 M 2007-03-11
12:45:00

Popi 5 NULL NULL

75 F 2007-03-12
22:03:00 Mimi 5 NULL NULL

V.1.3. Validation implicite et commandes non-annulables

Vous savez déjà que pour terminer une transaction, il faut utiliser les commandes COMMIT ou
ROLLBACK, selon que l’on veut valider les requêtes ou les annuler.

Ça, c’est la manière classique et recommandée. Mais il faut savoir qu’un certain nombre d’autres
commandes auront aussi pour effet de clôturer une transaction. Et pas seulement la clôturer, mais
également valider toutes les requêtes qui ont été faites dans cette transaction. Exactement
comme si vous utilisiez COMMIT.

Par ailleurs, ces commandes ne peuvent pas être annulées par un ROLLBACK.

V.1.3.0.1. Commandes DDL

Toutes les commandes qui créent, modifient, suppriment des objets dans la base de données
valident implicitement les transactions.

i
Ces commandes forment ce qu’on appelle les requêtes DDL, pour Data Definition Langage.

Cela comprend donc :

318

V. Sécuriser et automatiser ses actions

— la création et suppression de bases de données : CREATE DATABASE, DROP DATABASE ;
— la création, modification, suppression de tables : CREATE TABLE, ALTER TABLE, RENAME

TABLE, DROP TABLE ;
— la création, modification, suppression d’index : CREATE INDEX, DROP INDEX ;
— la création d’objets comme les procédures stockées, les vues, etc., dont nous parlerons

plus tard.

De manière générale, tout ce qui influe sur la structure de la base de données, et non sur
les données elles-mêmes.

V.1.3.0.2. Utilisateurs

La création, la modification et la suppression d’utilisateurs (voir partie 7) provoquent aussi une
validation implicite.

V.1.3.0.3. Transactions et verrous

Je vous ai signalé qu’il n’était pas possible d’imbriquer des transactions, donc d’avoir une
transaction à l’intérieur d’une transaction. En fait, la commande START TRANSACTION provoque
également une validation implicite si elle est exécutée à l’intérieur d’une transaction. Le fait
d’activer le mode autocommit (s’il n’était pas déjà activé) a le même effet.

La création et suppression de verrous de table clôturent aussi une transaction en la validant
implicitement (voir chapitre suivant).

V.1.3.0.4. Chargements de données

Enfin, le chargement de données avec LOAD DATA provoque également une validation implicite.

V.1.4. ACID

Derrière ce titre mystérieux se cache un concept très important !

?
Quels sont les critères qu’un système utilisant les transactions doit respecter pour être
fiable ?

Il a été défini que ces critères sont au nombre de quatre : Atomicité, Cohérence, Isolation et
Durabilité. Soit, si on prend la première lettre de chaque critère : ACID. Voyons donc en détail
ces quatre critères.

319

V. Sécuriser et automatiser ses actions

V.1.4.1. A pour Atomicité

Atome signifie étymologiquement ”qui ne peut être divisé”. Une transaction doit être atomique,
c’est-à-dire qu’elle doit former une entité complète et indivisible. Chaque élément de la
transaction, chaque requête effectuée, ne peut exister que dans la transaction.

Si l’on reprend l’exemple du virement bancaire, en utilisant les transactions, les deux étapes (débit
du compte donneur d’ordre, crédit du compte bénéficiaire) ne peuvent exister indépendamment
l’une de l’autre. Si l’une est exécutée, l’autre doit l’être également. Il s’agit d’un tout.

?
Peut-on dire que nos transactions sont atomiques ?

Oui. Si une transaction en cours est interrompue, aucune des requêtes exécutées ne sera validée.
De même, en cas d’erreur, il suffit de faire un ROLLBACK pour annuler toute la transaction. Et
si tout se passe bien, un COMMIT validera l’intégralité de la transaction en une fois.

V.1.4.2. C pour cohérence

Les données doivent rester cohérentes dans tous les cas : que la transaction se termine
sans encombre, qu’une erreur survienne, ou que la transaction soit interrompue. Un virement
dont seule l’étape de débit du donneur d’ordre est exécutée produit des données incohérentes
(la disparition de 300 euros jamais arrivés chez le bénéficiaire). Avec une transaction, cette
incohérence n’apparaît jamais. Tant que la totalité des étapes n’a pas été réalisée avec succès,
les données restent dans leur état initial.

?
Nos transactions permettent-elles d’assurer la cohérence des données ?

Oui, les changements de données ne sont validés qu’une fois que toutes les étapes ont été
exécutées. De l’extérieur de la transaction, le moment entre les deux étapes d’un virement n’est
jamais visible.

V.1.4.3. I pour Isolation

Chaque transaction doit être isolée, donc ne pas interagir avec une autre transaction.

?
Nos transactions sont-elles isolées ?

V.1.4.3.1. Test

Dans votre client MySQL, exécutez les requêtes suivantes (ne commitez pas) pour modifier le
pere_id du rat Bibo :

320

V. Sécuriser et automatiser ses actions

!
Copiez-collez tout le bloc dans votre client MySQL

 START TRANSACTION; -- On ouvre une transaction

 UPDATE Animal -- On modifie Bibo
 SET pere_id = 73
 WHERE espece_id = 5 AND nom = 'Bibo';

 SELECT id, nom, commentaires, pere_id, mere_id
 FROM Animal
 WHERE espece_id = 5;

À nouveau, ouvrez une deuxième session, tout en laissant la première ouverte (démarrez un
deuxième client SQL et connectez-vous à votre base de données). Exécutez les requêtes suivantes,
pour modifier les commentaires de Bibo.

!
À nouveau, prenez bien tout le bloc d’un coup, vous suivrez plus facilement les explications
qui suivent.

 START TRANSACTION; -- On ouvre une transaction

 SELECT id, nom, commentaires, pere_id, mere_id
 FROM Animal
 WHERE espece_id = 5;

 UPDATE Animal -- On modifie la perruche Bibo
 SET commentaires = 'Agressif'
 WHERE espece_id = 5 AND nom = 'Bibo';

 SELECT id, nom, commentaires, pere_id, mere_id
 FROM Animal
 WHERE espece_id = 5;

Le résultat n’est pas du tout le même dans les deux sessions. En effet, dans la première, on a la
confirmation que la requête UPDATE a été effectuée :

 Query OK, 1 row affected (0.00 sec)
 Rows matched: 1 Changed: 1 Warnings: 0

Et le SELECT renvoie bien les données modifiées (pere_id n’est plus NULL pour Bibo) :

321

V. Sécuriser et automatiser ses actions

id nom commentaires pere_id mere_id

69 Baba NULL NULL NULL

70 Bibo NULL 73 72

72 Momy NULL NULL NULL

73 Popi NULL NULL NULL

75 Mimi NULL NULL NULL

Par contre, dans la deuxième session, on a d’abord fait un SELECT, et Bibo n’a toujours pas de
père (puisque ça n’a pas été commité dans la première session). Donc on s’attendrait à ce que la
requête UPDATE laisse pere_id à NULL et modifie commentaires.

id nom commentaires pere_id mere_id

69 Baba NULL NULL NULL

70 Bibo NULL NULL 72

72 Momy NULL NULL NULL

73 Popi NULL NULL NULL

75 Mimi NULL NULL NULL

Seulement voilà, la requête UPDATE ne fait rien ! La session semble bloquée : pas de message de
confirmation après la requête UPDATE, et le second SELECT n’a pas été effectué.

 mysql>
 mysql> UPDATE Animal -- On modifie Bibo
 -> SET commentaires = 'Agressif'
 -> WHERE espece_id = 5 AND nom = 'Bibo';
 _

Commitez maintenant les changements dans la première session (celle qui n’est pas bloquée).
Retournez voir dans la seconde session : elle s’est débloquée et indique maintenant un message
de confirmation aussi :

 Query OK, 1 row affected (5.17 sec)
 Rows matched: 1 Changed: 1 Warnings: 0

Qui plus est, le SELECT a été exécuté (vous devrez peut-être appuyer sur Entrée pour que ce
soit envoyé au serveur) et les modifications ayant été faites par la session 1 ont été prises en
compte : commentaires vaut 'Agressif' et pere_id vaut 73 !

322

V. Sécuriser et automatiser ses actions

id nom commentaires pere_id mere_id

69 Baba NULL NULL NULL

70 Bibo Agressif 73 72

72 Momy NULL NULL NULL

73 Popi NULL NULL NULL

75 Mimi NULL NULL NULL

i
Il est possible que votre seconde session indique ceci : ER
ROR 1205 (HY000): Lock wait timeout exceeded; try restarting tran
saction. Cela signifie que la session est restée bloquée trop longtemps et que par
conséquent la transaction a été automatiquement fermée (avec un rollback des requêtes
effectuées). Dans ce cas, recommencez l’opération.

Il n’y a plus qu’à commiter les changements faits par la deuxième session, et c’est terminé !
Si vous ne commitez pas, commentaires restera NULL. Par contre, pere_id vaudra toujours 73
puisque ce changement-là a été commité par la première session.

V.1.4.3.2. Conclusion

La deuxième session n’a pas interagi avec les changements faits par la première session, chaque
transaction est bien isolée.

?
Et la première session qui bloque la seconde, ce n’est pas une interaction ça ?

Pas dans le cadre des critères ACID. Oui, la première session provoque un retard dans l’exécution
des requêtes de la deuxième session, mais les critères de fiabilité que nous examinons ici concernent
les données impactées par les transactions, et non le déroulement de celles-ci (qui importe
peu finalement). Ce blocage a pour effet d’empêcher la deuxième session d’écraser un changement
fait par la première. Donc, ce blocage a bien pour effet l’isolation des transactions.

V.1.4.3.3. Verrous

Le blocage de la deuxième session vient en fait de ce que la première session, en faisant sa
requête UPDATE, a automatiquement posé un verrou sur la ligne contenant Bobi le rat,
empêchant toute modification tant que la transaction était en cours. Les verrous faisant l’objet
du prochain chapitre, je n’en dis pas plus pour l’instant.

323

V. Sécuriser et automatiser ses actions

V.1.4.3.4. Utilité

Je vous l’accorde, vous n’allez pas vous amuser tous les jours à ouvrir deux sessions MySQL.
Par contre, pour une application pouvant être utilisée par plusieurs personnes en même temps
(qui toutes travaillent sur la même base de données), il est impératif que ce critère soit respecté.
Prenons l’exemple simple d’un jeu par navigateur : de nombreux joueurs peuvent être connectés
en même temps, et effectuer des opérations différentes. Si les transactions ne sont pas isolées,
une partie des actions des joueurs risquerait de se voir annulées. On isole donc les transactions
grâce aux verrous (qui sont ici automatiquement posés mais ce n’est pas toujours le cas).

V.1.4.4. D pour Durabilité

Une fois la transaction terminée, les données résultant de cette transaction doivent être stockées
de manière durable, et pouvoir être récupérées, en cas de crash du serveur par exemple.

?
Nos transactions modifient-elles les données de manière durable ?

Oui, une fois les changements commités, ils sont stockés définitivement (jusqu’à modification
par une nouvelle transaction).

V.1.4.5. En résumé
— Les transactions permettent de grouper plusieurs requêtes, lesquelles seront validées

(COMMIT) ou annulées (ROLLBACK) toutes en même temps.
— Tous les changements de données (insertion, suppression, modification) faits par les

requêtes à l’intérieur d’une transaction sont invisibles pour les autres sessions tant
que la transaction n’est pas validée.

— Les transactions permettent d’exécuter un traitement nécessitant plusieurs re-
quêtes en une seule fois, ou de l’annuler complètement si une des requêtes pose
problème ou si la transaction est interrompue.

— Certaines commandes SQL provoquent une validation implicite des transactions,
notamment toutes les commandes DDL, c’est-à-dire les commandes qui créent, modifient
ou suppriment des objets dans la base de données (tables, index,…).

— Les critères ACID sont les critères qu’un système appliquant les transactions doit respecter
pour être fiable : Atomicité, Cohérence, Isolation, Durabilité.

324

V. Sécuriser et automatiser ses actions

Contenumasqué

Contenumasqué n°46

 SET NAMES utf8;

 DROP TABLE IF EXISTS Animal;
 DROP TABLE IF EXISTS Race;
 DROP TABLE IF EXISTS Espece;

 CREATE TABLE Espece (
 id smallint(6) unsigned NOT NULL AUTO_INCREMENT,
 nom_courant varchar(40) NOT NULL,
 nom_latin varchar(40) NOT NULL,
 description text,
 prix decimal(7,2) unsigned DEFAULT NULL,
 PRIMARY KEY (id),
 UNIQUE KEY nom_latin (nom_latin)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=latin1;

 LOCK TABLES Espece WRITE;
 INSERT INTO Espece VALUES

(1,'Chien','Canis canis','Bestiole à quatre pattes qui aime les caresses et tire souvent la langue',200.00),(2,'Chat','Felis silvestris','Bestiole à quatre pattes qui saute très haut et grimpe aux arbres',150.00),(3,'Tortue d''Hermann','Testudo hermanni','Bestiole avec une carapace très dure',140.00),
 (4,'Perroquet amazone','Alipiopsitta xanthops','Joli oiseau parleur vert et jaune',700.00),(5,'Rat brun','Rattus norvegicus','Petite bestiole avec de longues moustaches et une longue queue sans poils',10.00);
 UNLOCK TABLES;

 CREATE TABLE Race (
 id smallint(6) unsigned NOT NULL AUTO_INCREMENT,
 nom varchar(40) NOT NULL,
 espece_id smallint(6) unsigned NOT NULL,
 description text,
 prix decimal(7,2) unsigned DEFAULT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=latin1;

 LOCK TABLES Race WRITE;
 INSERT INTO Race VALUES

(1,'Berger allemand',1,'Chien sportif et élégant au pelage dense, noir-marron-fauve, noir ou gris.',485.00),(2,'Berger blanc suisse',1,'Petit chien au corps compact, avec des pattes courtes mais bien proportionnées et au pelage tricolore ou bicolore.',935.00),(3,'Singapura',2,'Chat de petite taille aux grands yeux en amandes.',985.00),
 (4,'Bleu russe',2,'Chat aux yeux verts et à la robe épaisse et argentée.',835.00),(5,'Maine coon',2,'Chat de grande taille, à poils mi-longs.',735.00),(7,'Sphynx',2,'Chat sans poils.',1235.00),
 (8,'Nebelung',2,'Chat bleu russe, mais avec des poils longs...',985.00),(9,'Rottweiller',1,'Chien d''apparence solide, bien musclé, à la robe noire avec des taches feu bien délimitées.',600.00);
 UNLOCK TABLES;

 CREATE TABLE Animal (
 id smallint(6) unsigned NOT NULL AUTO_INCREMENT,

325

V. Sécuriser et automatiser ses actions

 sexe char(1) DEFAULT NULL,
 date_naissance datetime NOT NULL,
 nom varchar(30) DEFAULT NULL,
 commentaires text,
 espece_id smallint(6) unsigned NOT NULL,
 race_id smallint(6) unsigned DEFAULT NULL,
 mere_id smallint(6) unsigned DEFAULT NULL,
 pere_id smallint(6) unsigned DEFAULT NULL,
 PRIMARY KEY (id),
 UNIQUE KEY ind_uni_nom_espece_id (nom,espece_id)
) ENGINE=InnoDB AUTO_INCREMENT=63 DEFAULT CHARSET=utf8;

 LOCK TABLES Animal WRITE;
 INSERT INTO Animal VALUES

(1,'M','2010-04-05 13:43:00','Rox','Mordille beaucoup',1,1,18,22),(2,NULL,'2010-03-24 02:23:00','Roucky',NULL,2,NULL,40,30),(3,'F','2010-09-13 15:02:00','Schtroumpfette',NULL,2,4,41,31),
 (4,'F','2009-08-03 05:12:00',NULL,'Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(5,NULL,'2010-10-03 16:44:00','Choupi','Né sans oreille gauche',2,NULL,NULL,NULL),(6,'F','2009-06-13 08:17:00','Bobosse','Carapace bizarre',3,NULL,NULL,NULL),
 (7,'F','2008-12-06 05:18:00','Caroline',NULL,1,2,NULL,NULL),(8,'M','2008-09-11 15:38:00','Bagherra',NULL,2,5,NULL,NULL),(9,NULL,'2010-08-23 05:18:00',NULL,'Bestiole avec une carapace très dure',3,NULL,NULL,NULL),
 (10,'M','2010-07-21 15:41:00','Bobo',NULL,1,NULL,7,21),(11,'F','2008-02-20 15:45:00','Canaille',NULL,1,NULL,NULL,NULL),(12,'F','2009-05-26 08:54:00','Cali',NULL,1,2,NULL,NULL),
 (13,'F','2007-04-24 12:54:00','Rouquine',NULL,1,1,NULL,NULL),(14,'F','2009-05-26 08:56:00','Fila',NULL,1,2,NULL,NULL),(15,'F','2008-02-20 15:47:00','Anya',NULL,1,NULL,NULL,NULL),
 (16,'F','2009-05-26 08:50:00','Louya',NULL,1,NULL,NULL,NULL),(17,'F','2008-03-10 13:45:00','Welva',NULL,1,NULL,NULL,NULL),(18,'F','2007-04-24 12:59:00','Zira',NULL,1,1,NULL,NULL),
 (19,'F','2009-05-26 09:02:00','Java',NULL,1,2,NULL,NULL),(20,'M','2007-04-24 12:45:00','Balou',NULL,1,1,NULL,NULL),(21,'F','2008-03-10 13:43:00','Pataude',NULL,1,NULL,NULL,NULL),
 (22,'M','2007-04-24 12:42:00','Bouli',NULL,1,1,NULL,NULL),(24,'M','2007-04-12 05:23:00','Cartouche',NULL,1,NULL,NULL,NULL),(25,'M','2006-05-14 15:50:00','Zambo',NULL,1,1,NULL,NULL),
 (26,'M','2006-05-14 15:48:00','Samba',NULL,1,1,NULL,NULL),(27,'M','2008-03-10 13:40:00','Moka',NULL,1,NULL,NULL,NULL),(28,'M','2006-05-14 15:40:00','Pilou',NULL,1,1,NULL,NULL),
 (29,'M','2009-05-14 06:30:00','Fiero',NULL,2,3,NULL,NULL),(30,'M','2007-03-12 12:05:00','Zonko',NULL,2,5,NULL,NULL),(31,'M','2008-02-20 15:45:00','Filou',NULL,2,4,NULL,NULL),
 (32,'M','2009-07-26 11:52:00','Spoutnik',NULL,3,NULL,52,NULL),(33,'M','2006-05-19 16:17:00','Caribou',NULL,2,4,NULL,NULL),(34,'M','2008-04-20 03:22:00','Capou',NULL,2,5,NULL,NULL),
 (35,'M','2006-05-19 16:56:00','Raccou','Pas de queue depuis la naissance',2,4,NULL,NULL),(36,'M','2009-05-14 06:42:00','Boucan',NULL,2,3,NULL,NULL),(37,'F','2006-05-19 16:06:00','Callune',NULL,2,8,NULL,NULL),
 (38,'F','2009-05-14 06:45:00','Boule',NULL,2,3,NULL,NULL),(39,'F','2008-04-20 03:26:00','Zara',NULL,2,5,NULL,NULL),(40,'F','2007-03-12 12:00:00','Milla',NULL,2,5,NULL,NULL),
 (41,'F','2006-05-19 15:59:00','Feta',NULL,2,4,NULL,NULL),(42,'F','2008-04-20 03:20:00','Bilba','Sourde de l''oreille droite à 80%',2,5,NULL,NULL),(43,'F','2007-03-12 11:54:00','Cracotte',NULL,2,5,NULL,NULL),
 (44,'F','2006-05-19 16:16:00','Cawette',NULL,2,8,NULL,NULL),(45,'F','2007-04-01 18:17:00','Nikki','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(46,'F','2009-03-24 08:23:00','Tortilla','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),
 (47,'F','2009-03-26 01:24:00','Scroupy','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(48,'F','2006-03-15 14:56:00','Lulla','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(49,'F','2008-03-15 12:02:00','Dana','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),
 (50,'F','2009-05-25 19:57:00','Cheli','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(51,'F','2007-04-01 03:54:00','Chicaca','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(52,'F','2006-03-15 14:26:00','Redbul','Insomniaque',3,NULL,NULL,NULL),
 (54,'M','2008-03-16 08:20:00','Bubulle','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),(55,'M','2008-03-15 18:45:00','Relou','Surpoids',3,NULL,NULL,NULL),(56,'M','2009-05-25 18:54:00','Bulbizard','Bestiole avec une carapace très dure',3,NULL,NULL,NULL),
 (57,'M','2007-03-04 19:36:00','Safran','Coco veut un gâteau !',4,NULL,NULL,NULL),(58,'M','2008-02-20 02:50:00','Gingko','Coco veut un gâteau !',4,NULL,NULL,NULL),(59,'M','2009-03-26 08:28:00','Bavard','Coco veut un gâteau !',4,NULL,NULL,NULL),
 (60,'F','2009-03-26 07:55:00','Parlotte','Coco veut un gâteau !',4,NULL,NULL,NULL),(61,'M','2010-11-09 00:00:00','Yoda',NULL,2,5,NULL,NULL),(62,'M','2010-11-05 00:00:00','Pipo',NULL,1,9,NULL,NULL);
 UNLOCK TABLES;

 ALTER TABLE Race ADD CONSTRAINT fk_race_espece_id FOREIGN KEY

(espece_id) REFERENCES Espece (id) ON DELETE CASCADE;

 ALTER TABLE Animal ADD CONSTRAINT fk_race_id FOREIGN KEY (race_id)

REFERENCES Race (id) ON DELETE SET NULL;
 ALTER TABLE Animal ADD CONSTRAINT fk_espece_id FOREIGN KEY

(espece_id) REFERENCES Espece (id);
 ALTER TABLE Animal ADD CONSTRAINT fk_mere_id FOREIGN KEY (mere_id)

REFERENCES Animal (id) ON DELETE SET NULL;
 ALTER TABLE Animal ADD CONSTRAINT fk_pere_id FOREIGN KEY (pere_id)

REFERENCES Animal (id) ON DELETE SET NULL;

Retourner au texte.

326

V. Sécuriser et automatiser ses actions

Contenumasqué n°47

— On a inséré Momy (insertion hors transaction)
— Momy n’est pas la mère de Baba (modification dans une transaction dont les requêtes

ont été annulées)
— Momy est la mère de Bibo (modification hors transaction)
— Buba a été supprimée (suppression dans une transaction dont les requêtes ont été

commitées)

 SELECT id, nom, espece_id, mere_id
 FROM Animal
 WHERE espece_id = 5;

Retourner au texte.

327

V.2. Verrous

Complément indispensable des transactions, les verrous permettent de sécuriser les requêtes
en bloquant ponctuellement et partiellement l’accès aux données.

Il s’agit d’un gros chapitre, avec beaucoup d’informations. Il y a par conséquent un maximum
d’exemples pour vous aider à comprendre le comportement des verrous selon les situations.

Au sommaire de ce chapitre :

— Qu’est-ce qu’un verrou ?
— Quel est le comportement par défaut de MySQL par rapport aux verrous ?
— Quand et comment poser un verrou de table ?
— Quand et comment poser un verrou de ligne ?
— Comment modifier le comportement par défaut de MySQL?

V.2.1. Principe

Lorsqu’une session MySQL pose un verrou sur un élément de la base de données, cela veut dire
qu’il restreint, voire interdit, l’accès à cet élément aux autres sessions MySQL qui
voudraient y accéder.

V.2.1.1. Verrous de table et verrous de ligne

Il est possible de poser un verrou sur une table entière, ou seulement sur une ou
plusieurs lignes d’une table. Étant donné qu’un verrou empêche l’accès d’autres sessions, il
est en général plus intéressant de poser un verrou sur la plus petite partie de la base possible.

Par exemple, si l’on travaille avec les chiens de la table Animal.

— On peut poser un verrou sur toute la table Animal. Dans ce cas, les autres sessions
n’auront pas accès à cette table, tant que le verrou sera posé. Qu’elles veuillent en utiliser
les chiens, les chats, ou autre, tout leur sera refusé.

— On peut aussi poser un verrou uniquement sur les lignes de la table qui contiennent des
chiens. De cette manière, les autres sessions pourront accéder aux chats, aux perroquets,
etc. Elles pourront toujours travailler, tant qu’elles n’utilisent pas les chiens.

Cette notion d’accès simultané aux données par plusieurs sessions différentes s’appelle la
concurrence. Plus la concurrence est possible, donc plus le nombre de sessions pouvant accéder
aux données simultanément est grand, mieux c’est. En effet, prenons l’exemple d’un site web.
En général, on préfère permettre à plusieurs utilisateurs de surfer en même temps, sans devoir
attendre entre chaque action de pouvoir accéder aux informations chacun à son tour. Or, chaque
utilisateur crée une session chaque fois qu’il se connecte à la base de données (pour lire les

328

V. Sécuriser et automatiser ses actions

informations ou les modifier). Préférez donc (autant que possible) les verrous de ligne aux
verrous de table !

V.2.1.2. Avertissements

Les informations données dans ce chapitre concernent exclusivement MySQL, et en parti-
culier les tables utilisant les moteurs MyISAM ou InnoDB (selon le type de verrou utilisé).
En effet, les verrous sont implémentés différemment selon les SGDB, et même selon le moteur
de table en ce qui concerne MySQL. Si le principe général reste toujours le même, certains
comportements et certaines options peuvent différer d’une implémentation à l’autre. N’hésitez
pas à vous renseigner plus avant.

Par ailleurs, je vous présente ici les principes généraux et les principales options, mais il faut
savoir qu’il y a énormément à dire sur les verrous, et que j’ai donc dû faire un sérieux tri des
informations avant de rédiger ce chapitre. À nouveau, en cas de doute, ou si vous avez besoin
d’informations précises, je vous conseille vraiment de consulter la documentation officielle (si
possible en anglais, car elle est infiniment plus complète qu’en français).

Enfin, dernier avertissement : de nombreux changements dans l’implémentation des verrous
sont advenus lors du développement des dernières versions de MySQL. Aussi, la différence entre
les verrous dans la version 5.0 et la version 5.5 est assez importante. Tout ce que je présente
dans ce chapitre concerne la version 5.5. Vérifiez bien votre version, et si vous consultez la
documentation officielle, prenez bien celle qui concerne votre propre version.

V.2.1.3. Modification de notre base de données

Nous allons ajouter deux tables à notre base de données, afin d’illustrer au mieux l’intérêt et
l’utilisation des verrous : une table Client, qui contiendra les coordonnées des clients de notre
élevage, et une table Adoption, qui contiendra les renseignements concernant les adoptions faites
par nos clients. Dorénavant, certains animaux présents dans notre table Animal ne seront plus
disponibles, car ils auront été adoptés. Nous les garderons cependant dans notre base de données.
Avant toute adoption, il nous faudra donc vérifier la disponibilité de l’animal.

Voici les requêtes à effectuer pour faire ces changements.

Contenu masqué n°48

La table Adoption ne contient pas de colonne id auto-incrémentée. Par contre, on a bien
défini une clé primaire, mais une clé primaire composite (sur plusieurs colonnes). En effet,
une adoption est définie par un client adoptant un animal. Il n’est pas nécessaire d’ajouter
une colonne supplémentaire pour définir individuellement chaque ligne ; le couple (client_id,
animal_id) fait très bien l’affaire (il est composé de deux SMALLINT, donc les recherches sur
cette clé seront rapides). Notez que nous définissons également un index UNIQUE sur la colonne
animal_id. Par conséquent, on aurait même pu définir directement animal_id comme étant
la clé primaire. Je trouvais cependant plus logique d’inclure le client dans la définition d’une
adoption. C’est un choix plutôt arbitraire, qui a surtout comme avantage de vous montrer un
exemple de clé composite.

329

V. Sécuriser et automatiser ses actions

V.2.2. Syntaxe et utilisation : verrous de table

Les verrous de table sont les seuls supportés par MyISAM. Ils sont d’ailleurs principalement
utilisés pour pallier en partie l’absence de transactions dans MyISAM. Les tables InnoDB peuvent
également utiliser ce type de verrou.

Pour verrouiller une table, il faut utiliser la commande LOCK TABLES :

 LOCK TABLES nom_table [AS alias_table] [READ | WRITE] [, ...];

— En utilisant READ, un verrou de lecture sera posé ; c’est-à-dire que les autres sessions
pourront toujours lire les données des tables verrouillées, mais ne pourront plus les
modifier.

— En utilisant WRITE, un verrou d’écriture sera posé. Les autres sessions ne pourront plus
ni lire ni modifier les données des tables verrouillées.

Pour déverrouiller les tables, on utilise UNLOCK TABLES. Cela déverrouille toutes les tables
verrouillées. Il n’est pas possible de préciser les tables à déverrouiller. Tous les verrous de table
d’une session sont relâchés en même temps.

V.2.2.0.1. Session ayant obtenu le verrou

Lorsqu’une session acquiert un ou plusieurs verrous de table, cela a plusieurs conséquences pour
cette session :

— elle ne peut plus accéder qu’aux tables sur lesquelles elle a posé un verrou ;
— elle ne peut accéder à ces tables qu’en utilisant les noms qu’elle a donnés lors du

verrouillage (soit le nom de la table, soit le/les alias donné(s)) ;
— s’il s’agit d’un verrou de lecture (READ), elle peut uniquement lire les données,

pas les modifier.

Exemples : on pose deux verrous, l’un READ, l’autre WRITE, l’un en donnant un alias au nom
de la table, l’autre sans.

 LOCK TABLES Espece READ, -- On pose un verrou de
lecture sur Espece

 Adoption AS adopt WRITE; -- et un verrou d'écriture
sur Adoption avec l'alias adopt

Voyons maintenant le résultat de ces différentes requêtes.

1. Sélection dans Espece, sans alias.

 SELECT id, nom_courant FROM Espece;

330

V. Sécuriser et automatiser ses actions

id nom_courant

1 Chien

2 Chat

3 Tortue d’Hermann

4 Perroquet amazone

5 Rat brun

Pas de problème, on a bien un verrou sur Espece, sans alias.

2. Sélection dans Espece, avec alias.

 SELECT id, nom_courant
 FROM Espece AS table_espece;

 ERROR 1100 (HY000): Table 'table_espece' was not locked with LOCK TABLES

Par contre, si l’on essaye d’utiliser un alias, cela ne fonctionne pas. Le verrou est posé sur Espece,
pas sur Espece AS table_espece.

3. Modification dans Espece, sans alias.

 UPDATE Espece
 SET description = 'Petit piaf bruyant'
 WHERE id = 4;

 ERROR 1099 (HY000): Table 'Espece' was locked with a READ lock and can't be updated

Avec ou sans alias, impossible de modifier la table Espece, puisque le verrou que l’on possède
dessus est un verrou de lecture.

4. Sélection dans Adoption, sans alias.

 SELECT client_id, animal_id
 FROM Adoption;

331

V. Sécuriser et automatiser ses actions

 ERROR 1100 (HY000): Table 'Adoption' was not locked with LOCK TABLES

Cette fois, c’est le contraire, sans alias, ça ne passe pas.

5. Sélection dans Adoption, avec alias.

 SELECT client_id, animal_id
 FROM Adoption AS adopt
 WHERE client_id = 4;

client_id animal_id

4 26

4 41

6. Modification dans Adoption, sans alias.

 UPDATE Adoption
 SET paye = 0
 WHERE client_id = 10 AND animal_id = 49;

 ERROR 1100 (HY000): Table 'Adoption' was not locked with LOCK TABLES

Idem pour la modification, l’alias est indispensable.

7. Modification dans Adoption, avec alias.

 UPDATE Adoption AS adopt
 SET paye = 0
 WHERE client_id = 10 AND animal_id = 49;

 Query OK, 1 row affected (0.03 sec)

Il faut donc penser à acquérir tous les verrous nécessaires aux requêtes à exécuter. De plus,
il faut les obtenir en une seule requête LOCK TABLES. En effet, LOCK TABLES commence
par enlever tous les verrous de table de la session avant d’en acquérir de nouveaux. Il est bien
entendu possible de poser plusieurs verrous sur la même table en une seule requête afin de
verrouiller son nom ainsi qu’un ou plusieurs alias.

332

V. Sécuriser et automatiser ses actions

Exemples : on pose un verrou de lecture sur Adoption, puis avec une seconde requête, on pose
deux verrous de lecture sur la table Espece, l’un avec alias, l’autre sans.

 UNLOCK TABLES; -- On relâche d'abord les deux verrous précédents

 LOCK TABLES Adoption READ;
 LOCK TABLES Espece READ, Espece AS table_espece READ;

Une fois ces deux requêtes effectuées, nous aurons donc bien deux verrous de lecture sur la table
Espece : un avec son nom, l’autre avec un alias. Par contre, le verrou sur Adoption n’existera
plus puisqu’il aura été relâché par l’exécution de la seconde requête LOCK TABLES.

1. Sélection dans Espece, sans alias.

 SELECT id, nom_courant FROM Espece;

id nom_courant

1 Chien

2 Chat

3 Tortue d’Hermann

4 Perroquet amazone

5 Rat brun

2. Sélection dans Espece, avec alias.

 SELECT id, nom_courant FROM Espece AS table_espece;

id nom_courant

1 Chien

2 Chat

3 Tortue d’Hermann

4 Perroquet amazone

5 Rat brun

Avec ou sans alias, on peut sélectionner les données de la table Espece, puisque l’on a un verrou
sur Espece et sur Espece AS table_espece.

333

V. Sécuriser et automatiser ses actions

3. Sélection dans Espece, avec mauvais alias.

 SELECT id, nom_courant FROM Espece AS table_esp;

 ERROR 1100 (HY000): Table 'table_esp' was not locked with LOCK TABLES

Bien entendu, cela ne fonctionne que pour l’alias que l’on a donné lors du verrouillage.

4. Sélection dans Adoption, sans alias.

 SELECT * FROM Adoption;

 ERROR 1100 (HY000): Table 'Adoption' was not locked with LOCK TABLES

Le verrou sur Adoption a été relâché lorsque l’on a posé les verrous sur Espece. On ne peut donc
pas lire les données d’Adoption (avec ou sans alias).

V.2.2.0.2. Conséquences pour les autres sessions

Si une session a obtenu un verrou de lecture sur une table, les autres sessions :

— peuvent lire les données de la table ;
— peuvent également acquérir un verrou de lecture sur cette table ;
— ne peuvent pas modifier les données, ni acquérir un verrou d’écriture sur cette table.

Si par contre une session a obtenu un verrou d’écriture, les autres sessions ne peuvent
absolument pas accéder à cette table tant que ce verrou existe.

Exemples : ouvrez un deuxième client MySQL et connectez-vous à votre base de données, afin
d’avoir deux sessions ouvertes.

1. Sélection sur des tables verrouillées à partir d’une autre session.

Session 1 :

 LOCK TABLES Client READ, -- Verrou de lecture sur Client
 Adoption WRITE; -- Verrou d'écriture sur Adoption

Session 2 :

334

V. Sécuriser et automatiser ses actions

 SELECT id, nom, prenom, ville, email
 FROM Client
 WHERE ville = 'Houtsiplou';

id nom prenom ville email

1 Dupont Jean Houtsiplou jean.du-
pont@email.com

12 Broussaille Virginie Houtsiplou vibrou-
saille@email.com

La sélection sur Client se fait sans problème.

Session 2 :

 SELECT *
 FROM Adoption
 WHERE client_id = 4;

Par contre, la sélection sur Adoption ne passe pas. La session se bloque, jusqu’à ce que la session
1 déverrouille les tables avec UNLOCK TABLES.

2. Modification sur des tables verrouillées à partir d’une autre session.

Reverrouillez les tables avec la session 1 :

 LOCK TABLES Client READ, -- Verrou de lecture sur Client
 Adoption WRITE; -- Verrou d'écriture sur Adoption

Session 2 :

 UPDATE Client
 SET pays = 'Suisse'
 WHERE id = 5;

La modification sur Client, contrairement à la sélection, est bloquée jusqu’au déverrouillage.
Déverrouillez puis verrouillez à nouveau avec la session 1.

Session 2 :

 UPDATE Adoption
 SET paye = 1
 WHERE client_id = 3;

335

V. Sécuriser et automatiser ses actions

Bien entendu, la modification sur la table Adoption attend également que les verrous soient
relâchés par la session 1.

En ce qui concerne la pose de verrous de table par les autres sessions, faites vos propres tests,
mais simplement : si une session peut lire les données d’une table, elle peut également poser
un verrou de lecture. Si une session peut modifier les données d’une table, elle peut également
poser un verrou d’écriture.

V.2.2.0.3. Interaction avec les transactions

Si l’on utilise des tables MyISAM, il n’y a évidemment aucune précaution particulière à prendre
par rapport aux transactions lorsqu’on utilise des verrous de table (les tables MyISAM étant
non-transactionnelles). Par contre, si on utilise des tables InnoDB, il convient d’être prudent.
En effet :

— START TRANSACTION ôte les verrous de table ;
— les commandes LOCK TABLES et UNLOCK TABLES provoquent une validation implicite si

elles sont exécutées à l’intérieur d’une transaction.

Pour utiliser à la fois les transactions et les verrous de table, il faut renoncer à démarrer
explicitement les transactions, et donc utiliser le mode non-autocommit. Lorsque l’on est dans
ce mode, il est facile de contourner la validation implicite provoquée par LOCK TABLES et
UNLOCK TABLES : il suffit d’appeler LOCK TABLES avant toute modification de données, et de
commiter/annuler les modifications avant d’exécuter UNLOCK TABLES.

Exemple :

 SET autocommit = 0;
 LOCK TABLES Adoption WRITE; -- La validation implicite ne commite

rien puisque aucun changement n'a été fait

 UPDATE Adoption SET date_adoption = NOW() WHERE client_id = 9 AND

animal_id = 54;
 SELECT client_id, animal_id, date_adoption FROM Adoption WHERE

client_id = 9;

 ROLLBACK;
 UNLOCK TABLES; -- On a annulé les changements juste avant donc la

validation implicite n'a aucune conséquence
 SELECT client_id, animal_id, date_adoption FROM Adoption WHERE

client_id = 9;
 SET autocommit = 1;

336

V. Sécuriser et automatiser ses actions

V.2.3. Syntaxe et utilisation : verrous de ligne

!
Ces verrous ne peuvent pas être posés sur une table utilisant le moteur MyISAM ! Tout ce
qui est dit ici concerne les tables InnoDB uniquement.

Comme les verrous de table, les verrous de ligne peuvent être de deux types :

— Les verrous partagés : permettent aux autres sessions de lire les données, mais pas de
les modifier (équivalents aux verrous de table de lecture) ;

— Les verrous exclusifs : ne permettent ni la lecture ni la modification des données
(équivalents aux verrous d’écriture).

V.2.3.1. Requêtes demodification, insertion et suppression
— Les requêtes demodification et suppression des données posent automatiquement

un verrou exclusif sur les lignes concernées, à savoir les lignes sélectionnées par la
clause WHERE, ou toutes les lignes s’il n’y a pas de clause WHERE (ou s’il n’y a pas d’index,
sur les colonnes utilisées comme nous verrons plus loin).

— Les requêtes d’insertion quant à elles posent un verrou exclusif sur la ligne insérée.

V.2.3.2. Requêtes de sélection

Les requêtes de sélection, par défaut, ne posent pas de verrous. Il faut donc en poser explicitement
au besoin.

V.2.3.2.1. Verrou partagé

Pour poser un verrou partagé, on utilise LOCK IN SHARE MODE à la fin de la requête SELECT.

 SELECT * FROM Animal WHERE espece_id = 5 LOCK IN SHARE MODE;

Cette requête pose donc un verrou partagé sur les lignes de la table Animal pour lesquelles
espece_id vaut 5.

Ce verrou signifie en fait, pour les autres sessions : ”Je suis en train de lire ces données. Vous
pouvez venir les lire aussi, mais pas les modifier tant que je n’ai pas terminé.”.

V.2.3.2.2. Verrou exclusif

Pour poser un verrou exclusif, on utilise FOR UPDATE à la fin de la requête SELECT.

337

V. Sécuriser et automatiser ses actions

 SELECT * FROM Animal WHERE espece_id = 5 FOR UPDATE;

Ce verrou signifie aux autres sessions : ”Je suis en train de lire ces données dans le but probable
de faire une modification. Ne les lisez pas avant que j’aie fini (et bien sûr, ne les modifiez pas).”.

V.2.3.3. Transactions et fin d’un verrou de ligne

Les verrous de ligne ne sont donc pas posés par des commandes spécifiques, mais par des requêtes
de sélection, insertion ou modification. Ces verrous existent donc uniquement tant que la requête
qui les a posés interagit avec les données.

Par conséquent, ce type de verrou s’utilise en conjonction avec les transactions. En effet, hors
transaction, dès qu’une requête est lancée, elle est effectuée et les éventuelles modifications
des données sont immédiatement validées. Par contre, dans le cas d’une requête faite dans une
transaction, les changements ne sont pas validés tant que la transaction n’a pas été commitée.
Donc, à partir du moment où une requête a été exécutée dans une transaction, et jusqu’à la
fin de la transaction (COMMIT ou ROLLBACK), la requête a potentiellement un effet sur les
données. C’est à ce moment-là (quand une requête a été exécutée mais pas validée ou annulée)
qu’il est intéressant de verrouiller les données qui vont potentiellement être modifiées (ou
supprimées) par la transaction.

Un verrou de ligne est donc lié à la transaction dans laquelle il est posé. Dès que l’on fait un
COMMIT ou un ROLLBACK de la transaction, le verrou est levé.

V.2.3.4. Exemples

V.2.3.4.1. Verrou posé par une requête demodification

Session 1 :

 START TRANSACTION;

 UPDATE Client SET pays = 'Suisse'
 WHERE id = 8; -- un verrou exclusif sera posé sur la

ligne avec id = 8

Session 2 :

 START TRANSACTION;

 SELECT * FROM Client
 WHERE id = 8; -- pas de verrou

338

V. Sécuriser et automatiser ses actions

 SELECT * FROM Client
 WHERE id = 8
 LOCK IN SHARE MODE; -- on essaye de poser un verrou partagé

La première session a donc posé un verrou exclusif automatiquement en faisant un UPDATE.

La seconde session fait d’abord une simple sélection, sans poser de verrou. Pas de problème, la
requête passe.

?
Ah? La requête passe ? Et c’est normal ? Et le verrou exclusif alors ?

Oui, c’est normal et c’est important de comprendre pourquoi. En fait, lorsqu’une session
démarre une transaction, elle prend en quelque sorte une photo des tables dans
leur état actuel (les modifications non commitées n’étant pas visibles). La transaction va
alors travailler sur la base de cette photo, tant qu’on ne lui demande pas d’aller vérifier que les
données n’ont pas changé. Donc le SELECT ne voit pas les changements, et ne se heurte pas au
verrou, puisque celui-ci est posé sur les lignes de la table, et non pas sur la photo de cette table
que détient la session.

?
Et comment fait-on pour demander à la session d’actualiser sa photo ?

On lui demande de poser un verrou ! Lorsqu’une session pose un verrou sur une table, elle est
obligée de travailler vraiment avec la table, et pas sur sa photo. Elle va donc aller chercher les
dernières infos disponibles, et actualiser sa photo par la même occasion. On le voit bien avec la
seconde requête, qui tente de poser un verrou partagé (qui vise donc uniquement la lecture).
Elle va d’abord chercher les lignes les plus à jour et tombe sur le verrou posé par la première
session ; elle se retrouve alors bloquée jusqu’à ce que la première session ôte le verrou exclusif.

Session 1 :

 COMMIT;

En committant les changements de la session 1, le verrou exclusif posé par la requête de
modification est relâché. La session 2 est donc libre de poser à son tour un verrou partagé.

On peut également essayer la même manœuvre, avec cette fois-ci un UPDATE plutôt qu’un
SELECT ... LOCK IN SHARE MODE (donc une requête qui va tenter de poser un verrou exclusif
plutôt qu’un verrou partagé).

Session 1 :

 START TRANSACTION;

 UPDATE Adoption SET paye = 0

339

V. Sécuriser et automatiser ses actions

 WHERE client_id = 11;

Session 2 :

 START TRANSACTION;

 UPDATE Adoption SET paye = 1
 WHERE animal_id = 32; -- l'animal 32 a été adopté par le client 11

Comme prévu, la seconde session est bloquée, jusqu’à ce que la première session termine sa
transaction. Validez la transaction de la première session, puis de la seconde. Le comportement
sera le même si la deuxième session fait un DELETE sur les lignes verrouillées, ou un SELECT ...
FOR UPDATE.

V.2.3.4.2. Verrou posé par une requête d’insertion

Session 1 :

 START TRANSACTION;

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix)
 VALUES (12, 75, NOW(), 10.00);

Session 2 :

 SELECT * FROM Adoption
 WHERE client_id > 13
 LOCK IN SHARE MODE;

 SELECT * FROM Adoption
 WHERE client_id < 13
 LOCK IN SHARE MODE;

La première session insère une adoption pour le client 12 et pose un verrou exclusif sur cette ligne.
La seconde session fait deux requêtes SELECT en posant un verrou partagé : l’une qui sélectionne
les adoptions des clients avec un id supérieur à 13 ; l’autre qui sélectionne les adoptions des
clients avec un id inférieur à 13. Seule la seconde requête SELECT se heurte au verrou posé par
la première session, puisqu’elle tente de récupérer notamment les adoptions du client 12, dont
une est verrouillée.

Dès que la session 1 commite l’insertion, la sélection se fait dans la session 2.

Session 1 :

340

V. Sécuriser et automatiser ses actions

 COMMIT;

V.2.3.4.3. Verrou posé par une requête de sélection

Voyons d’abord le comportement d’un verrou partagé, posé par SELECT ... LOCK IN SHARE
MODE.

Session 1 :

 START TRANSACTION;

 SELECT * FROM Client
 WHERE id < 5
 LOCK IN SHARE MODE;

Session 2 :

 START TRANSACTION;

 SELECT * FROM Client
 WHERE id BETWEEN 3 AND 8;

 SELECT * FROM Client
 WHERE id BETWEEN 3 AND 8
 LOCK IN SHARE MODE;

 SELECT * FROM Client
 WHERE id BETWEEN 3 AND 8
 FOR UPDATE;

La première session pose un verrou partagé sur les clients 1, 2, 3 et 4. La seconde session fait
trois requêtes de sélection. Toutes les trois concernent les clients 3 à 8 (dont les deux premiers
sont verrouillés).

— Requête 1 : ne pose aucun verrou (travaille sur une ”photo” de la table et pas sur les
vraies données) donc s’effectue sans souci.

— Requête 2 : pose un verrou partagé, ce qui est faisable sur une ligne verrouillée par un
verrou partagé. Elle s’effectue également.

— Requête 3 : tente de poser un verrou exclusif, ce qui lui est refusé.

Bien entendu, des requêtes UPDATE ou DELETE (posant des verrous exclusifs) faites par la
deuxième session se verraient, elles aussi, bloquées.

Terminez les transactions des deux sessions (par un rollback ou un commit).

341

V. Sécuriser et automatiser ses actions

Quant aux requêtes SELECT ... FOR UPDATE posant un verrou exclusif, elles provoqueront
exactement les mêmes effets qu’une requête UPDATE ou DELETE (après tout, un verrou exclusif,
c’est un verrou exclusif).

Session 1 :

 START TRANSACTION;

 SELECT * FROM Client
 WHERE id < 5
 FOR UPDATE;

Session 2 :

 START TRANSACTION;

 SELECT * FROM Client
 WHERE id BETWEEN 3 AND 8;

 SELECT * FROM Client
 WHERE id BETWEEN 3 AND 8
 LOCK IN SHARE MODE;

Cette fois-ci, même la requête SELECT ... LOCK IN SHARE MODE de la seconde session est
bloquée (comme le serait une requête SELECT ... FOR UPDATE, ou une requête UPDATE, ou une
requête DELETE).

V.2.3.5. En résumé
— On pose un verrou partagé lorsqu’on fait une requête dans le but de lire des données.
— On pose un verrou exclusif lorsqu’on fait une requête dans le but (immédiat ou non) de

modifier des données.
— Un verrou partagé sur les lignes x va permettre aux autres sessions d’obtenir également

un verrou partagé sur les lignes x, mais pas d’obtenir un verrou exclusif.
— Un verrou exclusif sur les lignes x va empêcher les autres sessions d’obtenir un verrou

sur les lignes x, qu’il soit partagé ou exclusif.

i
En fait, ils portent plutôt bien leurs noms ces verrous !

V.2.3.6. Rôle des index

Tentons une nouvelle expérience.

Session 1 :

342

V. Sécuriser et automatiser ses actions

 START TRANSACTION;
 UPDATE Animal
 SET commentaires = CONCAT_WS(' ', 'Animal fondateur.',

commentaires) -- On ajoute une phrase de commentaire
 WHERE date_naissance < '2007-01-01';

-- à tous les animaux nés avant 2007

Session 2 :

 START TRANSACTION;
 UPDATE Animal
 SET commentaires = 'Aveugle' -- On modifie les

commentaires
 WHERE date_naissance = '2008-03-10 13:40:00'; -- De l'animal né le

10 mars 2008 à 13h40

Dans la session 1, on fait un UPDATE sur les animaux nés avant 2007. On s’attend donc à pouvoir
utiliser les animaux nés après dans une autre session, puisque InnoDB pose des verrous sur
les lignes et pas sur toute la table. Pourtant, la session 2 semble bloquée lorsque l’on fait un
UPDATE sur un animal né en 2008. Faites un rollback sur la session 1 ; ceci débloque la session 2.
Annulez également la requête de cette session.

?
Ce comportement est donc en contradiction avec ce qu’on obtenait précédemment. Quelle
est la différence ?

Le sous-titre vous a évidemment soufflé la réponse : la différence se trouve au niveau des
index. Voyons donc ça ! Voici une commande qui va vous afficher les index présents sur la table
Animal :

 SHOW INDEX FROM Animal;

Table Non_unique Key_name Column_name Null

Animal 0 PRIMARY id

Animal 0 ind_uni_nom_es-
pece_id nom YES

Animal 0 ind_uni_nom_es-
pece_id espece_id

Animal 1 fk_race_id race_id YES

Animal 1 fk_espece_id espece_id

Animal 1 fk_mere_id mere_id YES

343

V. Sécuriser et automatiser ses actions

Animal 1 fk_pere_id pere_id YES

i
Une partie des colonnes du résultat montré ici a été retirée pour des raisons de clarté.

Nous avons donc des index sur les colonnes suivantes : id, nom, mere_id, pere_id, espece_id et
race_id. Mais aucun index sur la colonne date_naissance.

Il semblerait donc que lorsque l’on pose un verrou, avec dans la clause WHERE de la requête une
colonne indexée (espece_id), le verrou est bien posé uniquement sur les lignes pour lesquelles
espece_id vaut la valeur recherchée. Par contre, si dans la clause WHERE on utilise une colonne
non-indexée (date_naissance), MySQL n’est pas capable de déterminer quelles lignes doivent
être bloquées, donc on se retrouve avec toutes les lignes bloquées.

?
Pourquoi faut-il un index pour pouvoir poser un verrou efficacement ?

C’est très simple ! Vous savez que lorsqu’une colonne est indexée (que ce soit un index simple,
unique, ou une clé primaire ou étrangère), MySQL stocke les valeurs de cette colonne en les
triant. Du coup, lors d’une recherche sur l’index, pas besoin de parcourir toutes les lignes, il
peut utiliser des algorithmes de recherche performants et trouver facilement les lignes concernées.
S’il n’y a pas d’index par contre, toutes les lignes doivent être parcourues chaque fois que la
recherche est faite, et il n’y a donc pas moyen de verrouiller simplement une partie de l’index
(donc une partie des lignes). Dans ce cas, MySQL verrouille toutes les lignes.

Cela fait une bonne raison de plus de mettre des index sur les colonnes qui servent fréquemment
dans vos clauses WHERE !

Encore une petite expérience pour illustrer le rôle des index dans le verrouillage de lignes :

Session 1 :

 START TRANSACTION;
 UPDATE Animal -- Modification de tous les rats
 SET commentaires = CONCAT_WS(' ', 'Très intelligent.',

commentaires)
 WHERE espece_id = 5;

Session 2 :

 START TRANSACTION;
 UPDATE Animal
 SET commentaires = 'Aveugle'
 WHERE id = 34; -- Modification de l'animal 34 (un chat)
 UPDATE Animal

344

V. Sécuriser et automatiser ses actions

 SET commentaires = 'Aveugle'
 WHERE id = 72; -- Modification de l'animal 72 (un rat)

La session 1 se sert de l’index sur espece_id pour verrouiller les lignes contenant des rats bruns.
Pendant ce temps, la session 2 veut modifier deux animaux : un chat et un rat, en se basant
sur leur id. La modification du chat se fait sans problème, par contre, la modification du rat
est bloquée, tant que la transaction de la session 1 est ouverte. Faites un rollback des deux
transactions.

On peut conclure de cette expérience que, bien que MySQL utilise les index pour verrouiller les
lignes, il n’est pas nécessaire d’utiliser le même index pour avoir des accès concurrents.

V.2.3.7. Lignes fantômes et index de clé suivante

?
Qu’est-ce qu’une ligne fantôme ?

Dans une session, démarrons une transaction et sélectionnons toutes les adoptions faites par les
clients dont l’id dépasse 13, avec un verrou exclusif.

Session 1 :

 START TRANSACTION;

 SELECT * FROM Adoption WHERE client_id > 13 FOR UPDATE; -- ne pas

oublier le FOR UPDATE pour poser le verrou

La requête va poser un verrou exclusif sur toutes les lignes dont client_id vaut 14 ou plus.

client_id animal_id date_reserva-
tion

date_adop-
tion

prix paye

14 58 2012-02-25 2012-02-25 700.00 1

15 30 2008-08-17 2008-08-17 735.00 1

Imaginons maintenant qu’une seconde session démarre une transaction à ce moment-là, insère
et commite une ligne dans Adoption pour le client 15. Si, par la suite, la première session refait
la même requête de sélection avec verrou exclusif, elle va faire apparaître une troisième ligne de
résultat : l’adoption nouvellement insérée (étant donné que pour poser le verrou, la session va
aller chercher les données les plus à jour, prenant en compte le commit de la seconde session).

Cette ligne nouvellement apparue malgré les verrous est une ”ligne fantôme”.

Pour pallier ce problème, qui est contraire au principe d’isolation, les verrous posés par des
requêtes de lecture, de modification et de suppression sont des verrous dits ”de clé

345

V. Sécuriser et automatiser ses actions

suivante” ; ils empêchent l’insertion d’une ligne dans les espaces entre les lignes verrouillées,
ainsi que dans l’espace juste après les lignes verrouillées.

?
L’espace entre ? L’espace juste après ?

Nous avons vu que les verrous se basent sur les index pour verrouiller uniquement les lignes
nécessaires. Voici un petit schéma qui vous expliquera ce qu’est cet ”index de clé suivante”.

On peut représenter l’index sur client_id de la table Adoption de la manière suivante (je ne mets

que les client_id < 10) :

Si l’on insère une adoption avec 4 pour client_id, l’index va être réorganisé de la manière suivante :

Mais, si l’on pose un verrou de clé suivante sur l’index, sur les lignes dont client_id vaut 4, on va
alors verrouiller les lignes, les espaces entre les lignes et les espaces juste après. Ceci va

bloquer l’insertion de la nouvelle ligne :

Démonstration

On a toujours un verrou exclusif (grâce à notre SELECT ... FOR UPDATE) sur les client_id
supérieurs à 14 dans la session 1 (sinon, reposez-le).

Session 2 :

 START TRANSACTION;

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix)
 VALUES (15, 61, NOW(), 735.00);

L’insertion est bloquée ! Pas de risque de voir apparaître une ligne fantôme. Annulez les deux
transactions.

346

V. Sécuriser et automatiser ses actions

V.2.3.7.1. Exception

Si la clause WHERE concerne un index UNIQUE (cela inclut bien sûr les clés primaires) et recherche
une seule valeur (exemple : WHERE id = 4), alors seule la ligne concernée (si elle existe) est
verrouillée, et pas l’espace juste après dans l’index. Forcément, s’il s’agit d’un index UNIQUE,
l’insertion d’une nouvelle valeur ne changera rien : WHERE id = 4 ne renverra jamais qu’une
seule ligne.

V.2.3.8. Pourquoi poser un verrou exclusif avec une requête SELECT?

Après tout, une requête SELECT ne fait jamais que lire des données. Que personne ne puisse les
modifier pendant qu’on est en train de les lire, c’est tout à fait compréhensible. Mais pourquoi
carrément interdire aux autres de les lire aussi ?

Tout simplement parce que certaines données sont lues dans le but prévisible et avoué de les
modifier immédiatement après.

L’exemple typique est la vérification de stock dans un magasin (ou dans un élevage d’animaux).
Un client arrive et veut adopter un chat, on vérifie donc les chats disponibles pour l’adoption,
en posant un verrou partagé :

Session 1 :

 START TRANSACTION;

 SELECT Animal.id, Animal.nom, Animal.date_naissance, Race.nom as

race, COALESCE(Race.prix, Espece.prix) as prix
 FROM Animal
 INNER JOIN Espece ON Animal.espece_id = Espece.id
 LEFT JOIN Race ON Animal.race_id = Race.id -- Jointure

externe, on ne veut pas que les chats de race
 WHERE Espece.nom_courant = 'Chat' --

Uniquement les chats...
 AND Animal.id NOT IN (SELECT animal_id FROM Adoption) -- ... qui

n'ont pas encore été adoptés
 LOCK IN SHARE MODE;

id nom date_naissance race prix

2 Roucky 2010-03-24
02:23:00 NULL 150.00

8 Bagherra 2008-09-11
15:38:00 Maine coon 735.00

29 Fiero 2009-05-14
06:30:00 Singapura 985.00

31 Filou 2008-02-20
15:45:00 Bleu russe 835.00

34 Capou 2008-04-20
03:22:00 Maine coon 735.00

347

V. Sécuriser et automatiser ses actions

35 Raccou 2006-05-19
16:56:00 Bleu russe 835.00

36 Boucan 2009-05-14
06:42:00 Singapura 985.00

37 Callune 2006-05-19
16:06:00 Nebelung 985.00

38 Boule 2009-05-14
06:45:00 Singapura 985.00

43 Cracotte 2007-03-12
11:54:00 Maine coon 735.00

44 Cawette 2006-05-19
16:16:00 Nebelung 985.00

61 Yoda 2010-11-09
00:00:00 Maine coon 735.00

i
Je rappelle que la fonction COALESCE() prend un nombre illimité de paramètres, et renvoie
le premier paramètre non NULL qu’elle rencontre. Donc ici, s’il s’agit d’un chat de race,
Race.prix ne sera pas NULL et sera donc renvoyé. Par contre, s’il n’y a pas de race, Race.prix
sera NULL, mais pas Espece.prix, qui sera alors sélectionné.

Si, pendant que le premier client fait son choix, un second client arrive, qui veut adopter un
chat Maine Coon, il va également chercher la liste des chats disponibles. Et vu qu’on travaille
pour l’instant en verrous partagés, il va pouvoir l’obtenir.

Session 2 :

 START TRANSACTION;

 SELECT Animal.id, Animal.nom, Animal.date_naissance, Race.nom as

race, COALESCE(Race.prix, Espece.prix) as prix
 FROM Animal
 INNER JOIN Espece ON Animal.espece_id = Espece.id
 INNER JOIN Race ON Animal.race_id = Race.id -- Jointure

interne cette fois
 WHERE Race.nom = 'Maine Coon' --

Uniquement les Maine Coon...
 AND Animal.id NOT IN (SELECT animal_id FROM Adoption) -- ... qui

n'ont pas encore été adoptés
 LOCK IN SHARE MODE;

id nom date_naissance race prix

8 Bagherra 2008-09-11
15:38:00 Maine coon 735.00

34 Capou 2008-04-20
03:22:00 Maine coon 735.00

43 Cracotte 2007-03-12
11:54:00 Maine coon 735.00

348

V. Sécuriser et automatiser ses actions

61 Yoda 2010-11-09
00:00:00 Maine coon 735.00

C’est alors que le premier client, M. Dupont, décide de craquer pour Bagherra.

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,
paye)

 SELECT id, 8, NOW(), 735.00, 1
 FROM Client
 WHERE email = 'jean.dupont@email.com';

 COMMIT;

Et M. Durant jette également son dévolu sur Bagherra (qui est décidément très très mignon) !

 INSERT INTO Client (nom, prenom, email)
 VALUES ('Durant', 'Philippe', 'phidu@email.com');

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,

paye)
 VALUES (LAST_INSERT_ID(), 8, NOW(), 735.00, 0);

L’insertion dans Client fonctionne mais l’insertion dans Adoption pose problème :

 ERROR 1062 (23000): Duplicate entry '8' for key 'ind_uni_animal_id'

Et pour cause : Bagherra vient d’être adopté, à l’instant. Furieux, M. Durant s’en va, et l’élevage
a perdu un client. Il ne reste plus qu’à annuler sa transaction.

C’est pour éviter ce genre de situation qu’il vaut parfois mieux mettre un verrou exclusif sur
une sélection. Si l’on sait que cette sélection sert à déterminer quels changements vont être faits,
ce n’est pas la peine de laisser quelqu’un d’autre lire des informations qui cesseront d’être justes
incessamment sous peu.

V.2.4. Niveaux d’isolation

Nous avons vu que par défaut :

— lorsque l’on démarre une transaction, la session prend une photo des tables, et travaille
uniquement sur cette photo (donc sur des données potentiellement périmées) tant qu’elle
ne pose pas un verrou ;

— les requêtes SELECT ne posent pas de verrous si l’on ne le demande pas explicitement ;

349

V. Sécuriser et automatiser ses actions

— les requêtes SELECT ... LOCK IN SHARE MODE, SELECT ... FOR UPDATE, DELETE et
UPDATE posent un verrou de clé suivante (sauf dans le cas d’une recherche sur index
unique, avec une valeur unique).

Ce comportement est défini par le niveau d’isolation des transactions.

V.2.4.1. Syntaxe

Pour définir le niveau d’isolation des transactions, on utilise la requête suivante :

 SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL { READ
UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE
}

— Le mot-clé GLOBAL définit le niveau d’isolation pour toutes les sessions MySQL qui seront
créées dans le futur. Les sessions existantes ne sont pas affectées.

— SESSION définit le niveau d’isolation pour la session courante.
— Si l’on ne précise ni GLOBAL, ni SESSION, le niveau d’isolation défini ne concernera que

la prochaine transaction que l’on ouvrira dans la session courante.

V.2.4.2. Les différents niveaux

V.2.4.2.1. REPEATABLE READ

Il s’agit du niveau par défaut, celui avec lequel vous travaillez depuis le début. Repeatable
read signifie ”lecture répétable”, c’est-à-dire que si l’on fait plusieurs requêtes de sélection
(non-verrouillantes) de suite, elles donneront toujours le même résultat, quels que soient les
changements effectués par d’autres sessions. Si l’on pense à bien utiliser les verrous là où c’est
nécessaire, c’est un niveau d’isolation tout à fait suffisant.

V.2.4.2.2. READ COMMITTED

Avec ce niveau d’isolation, chaque requête SELECT (non-verrouillante) va reprendre une ”photo”
à jour de la base de données, même si plusieurs SELECT se font dans la même transaction. Ainsi,
un SELECT verra toujours les derniers changements commités, même s’ils ont été faits dans une
autre session, après le début de la transaction.

350

V. Sécuriser et automatiser ses actions

V.2.4.2.3. READ UNCOMMITTED

Le niveau READ UNCOMMITTED fonctionne comme READ COMMITTED, si ce n’est qu’il autorise
la ”lecture sale”. C’est-à-dire qu’une session sera capable de lire des changements encore non
commités par d’autres sessions.

Exemple

Session 1 :

 START TRANSACTION;

 UPDATE Race
 SET prix = 0
 WHERE id = 7;

Session 2 :

 SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
 START TRANSACTION;

 SELECT id, nom, espece_id, prix FROM Race;

id nom espece_id prix

1 Berger allemand 1 485.00

2 Berger blanc suisse 1 935.00

3 Singapura 2 985.00

4 Bleu russe 2 835.00

5 Maine coon 2 735.00

7 Sphynx 2 0.00

8 Nebelung 2 985.00

9 Rottweiller 1 600.00

La modification faite par la session 1 n’a pas été commitée. Elle ne sera donc potentiellement
jamais validée, auquel cas, elle n’affectera jamais les données. Pourtant, la session 2 voit
ce changement de données non-commitées. ”Lecture sale” n’a pas une connotation négative
par hasard, bien entendu ! Aussi, évitez de travailler avec ce niveau d’isolation. Annulez la
modification de données réalisée par la session 1 et terminez la transaction de la seconde
session.

351

V. Sécuriser et automatiser ses actions

V.2.4.2.4. SERIALIZABLE

Ce niveau d’isolation se comporte comme REPEATABLE READ, sauf que lorsque le mode autocom-
mit est désactivé, tous les SELECT simples sont implicitement convertis en SELECT ... LOCK
IN SHARE MODE.

V.2.4.3. En résumé
— Les verrous permettent de restreindre, voire interdire l’accès, à une partie des

données.
— Les verrous de table peuvent s’utiliser sur des tables transactionnelles et non-transactionnelles,

contrairement aux verrous de ligne qui ne sont disponibles que pour des tables tran-
sactionnelles.

— Les verrous de lecture (tables) et partagés (lignes) permettent aux autres sessions
de lire les données verrouillées, mais pas de les modifier. Les verrous d’écriture (tables)
et exclusif (lignes) par contre, ne permettent aux autres sessions ni de lire, ni de modifier
les données verrouillées.

— Les verrous de ligne s’utilisent avec les transactions, et dépendent des index.
— Les requêtes de suppression, modification et insertion posent automatiquement

un verrou de ligne exclusif de clé suivante sur les lignes concernées par la requête. Les
requêtes de sélection par contre, ne posent pas de verrou par défaut, il faut en poser un
explicitement.

— Le comportement par défaut des verrous de ligne est défini par le niveau d’isolation
des transactions, qui est modifiable.

Contenumasqué

Contenumasqué n°48

 -- Table Client
 CREATE TABLE Client (
 id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL,
 nom VARCHAR(100) NOT NULL,
 prenom VARCHAR(60) NOT NULL,
 adresse VARCHAR(200),
 code_postal VARCHAR(6),
 ville VARCHAR(60),
 pays VARCHAR(60),
 email VARBINARY(100),
 PRIMARY KEY (id),
 UNIQUE INDEX ind_uni_email (email)
) ENGINE = InnoDB;

352

V. Sécuriser et automatiser ses actions

 -- Table Adoption
 CREATE TABLE Adoption (
 client_id SMALLINT UNSIGNED NOT NULL,
 animal_id SMALLINT UNSIGNED NOT NULL,
 date_reservation DATE NOT NULL,
 date_adoption DATE,
 prix DECIMAL(7,2) UNSIGNED NOT NULL,
 paye TINYINT(1) NOT NULL DEFAULT 0,
 PRIMARY KEY (client_id, animal_id),
 CONSTRAINT fk_client_id FOREIGN KEY (client_id) REFERENCES

Client(id),
 CONSTRAINT fk_adoption_animal_id FOREIGN KEY (animal_id)

REFERENCES Animal(id),
 UNIQUE INDEX ind_uni_animal_id (animal_id)
) ENGINE = InnoDB;

 -- Insertion de quelques clients
 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,

email) VALUES ('Jean', 'Dupont', 'Rue du Centre, 5', '45810',
'Houtsiplou', 'France', 'jean.dupont@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Marie', 'Boudur', 'Place de la Gare, 2',
'35840', 'Troudumonde', 'France', 'marie.boudur@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Fleur', 'Trachon', 'Rue haute, 54b', '3250',
'Belville', 'Belgique', 'fleurtrachon@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Julien', 'Van Piperseel', NULL, NULL, NULL,
NULL, 'jeanvp@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Johan', 'Nouvel', NULL, NULL, NULL, NULL,
'johanetpirlouit@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Frank', 'Germain', NULL, NULL, NULL, NULL,
'francoisgermain@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Maximilien', 'Antoine', 'Rue Moineau, 123',
'4580', 'Trocoul', 'Belgique', 'max.antoine@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Hector', 'Di Paolo', NULL, NULL, NULL, NULL,
'hectordipao@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Anaelle', 'Corduro', NULL, NULL, NULL, NULL,
'ana.corduro@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Eline', 'Faluche', 'Avenue circulaire, 7',
'45870', 'Garduche', 'France', 'elinefaluche@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Carine', 'Penni', 'Boulevard Haussman, 85',
'1514', 'Plasse', 'Suisse', 'cpenni@email.com');

353

V. Sécuriser et automatiser ses actions

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Virginie', 'Broussaille', 'Rue du Fleuve, 18',
'45810', 'Houtsiplou', 'France', 'vibrousaille@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Hannah', 'Durant', 'Rue des Pendus, 66',
'1514', 'Plasse', 'Suisse', 'hhdurant@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Elodie', 'Delfour', 'Rue de Flore, 1', '3250',
'Belville', 'Belgique', 'e.delfour@email.com');

 INSERT INTO Client (prenom, nom, adresse, code_postal, ville, pays,
email) VALUES ('Joel', 'Kestau', NULL, NULL, NULL, NULL,
'joel.kestau@email.com');

 -- Insertion de quelques adoptions
 INSERT INTO Adoption (client_id, animal_id, date_reservation,

date_adoption, prix, paye) VALUES (1, 39, '2008-08-17',
'2008-08-17', 735.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (1, 40, '2008-08-17',
'2008-08-17', 735.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (2, 18, '2008-06-04',
'2008-06-04', 485.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (3, 27, '2009-11-17',
'2009-11-17', 200.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (4, 26, '2007-02-21',
'2007-02-21', 485.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (4, 41, '2007-02-21',
'2007-02-21', 835.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (5, 21, '2009-03-08',
'2009-03-08', 200.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (6, 16, '2010-01-27',
'2010-01-27', 200.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (7, 5, '2011-04-05',
'2011-04-05', 150.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (8, 42, '2008-08-16',
'2008-08-16', 735.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (9, 55, '2011-02-13',
'2011-02-13', 140.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (9, 54, '2011-02-13',
'2011-02-13', 140.00, 1);

354

V. Sécuriser et automatiser ses actions

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (10, 49, '2010-08-17',
'2010-08-17', 140.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (11, 62, '2011-03-01',
'2011-03-01', 630.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (12, 69, '2007-09-20',
'2007-09-20', 10.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (13, 57, '2012-01-10',
'2012-01-10', 700.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (14, 58, '2012-02-25',
'2012-02-25', 700.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (15, 30, '2008-08-17',
'2008-08-17', 735.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (11, 32, '2008-08-17',
'2010-03-09', 140.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (9, 33, '2007-02-11',
'2007-02-11', 835.00, 1);

 INSERT INTO Adoption (client_id, animal_id, date_reservation,
date_adoption, prix, paye) VALUES (2, 3, '2011-03-12',
'2011-03-12', 835.00, 1);

Retourner au texte.

355

	V Sécuriser et automatiser ses actions
	V.1 Transactions
	V.1.0.1 Etat actuel de la base de données
	V.1.1 Principe
	V.1.1.1 Support des transactions

	V.1.2 Syntaxe et utilisation
	V.1.2.1 Valider/annuler les changements
	V.1.2.2 Démarrer explicitement une transaction
	V.1.2.3 Jalon de transaction

	V.1.3 Validation implicite et commandes non-annulables
	V.1.4 ACIDAtomicité Cohérence Isolation Durabilité
	V.1.4.1 A pour Atomicité
	V.1.4.2 C pour cohérence
	V.1.4.3 I pour Isolation
	V.1.4.4 D pour Durabilité
	V.1.4.5 En résumé

	Contenu masqué

	V.2 Verrous
	V.2.1 Principe
	V.2.1.1 Verrous de table et verrous de ligne
	V.2.1.2 Avertissements
	V.2.1.3 Modification de notre base de données

	V.2.2 Syntaxe et utilisation : verrous de table
	V.2.3 Syntaxe et utilisation : verrous de ligne
	V.2.3.1 Requêtes de modification, insertion et suppression
	V.2.3.2 Requêtes de sélection
	V.2.3.3 Transactions et fin d'un verrou de ligne
	V.2.3.4 Exemples
	V.2.3.5 En résumé
	V.2.3.6 Rôle des index
	V.2.3.7 Lignes fantômes et index de clé suivante
	V.2.3.8 Pourquoi poser un verrou exclusif avec une requête SELECT ?

	V.2.4 Niveaux d'isolation
	V.2.4.1 Syntaxe
	V.2.4.2 Les différents niveaux
	V.2.4.3 En résumé

	Contenu masqué

