V.7. Triggers

Les triggers (ou déclencheurs) sont des objets de la base de données. Attachés a une table, ils
vont déclencher I’exécution d’une instruction, ou d’'un bloc d’instructions, lorsqu’une,
ou plusieurs lignes sont insérées, supprimées ou modifiées dans la table a laquelle ils
sont attachés.

Dans ce chapitre, nous allons voir comment ils fonctionnent exactement, comment on peut les
créer et les supprimer, et surtout, comment on peut s’en servir et quelles sont leurs restrictions.

V.7.1. Principe et usage

V.7.1.1. Qu’est-ce qu’un trigger?

Tout comme les procédures stockées, les triggers servent a exécuter une ou plusieurs instructions.
Mais a la différence des procédures, il n’est pas possible d’appeler un trigger : un trigger doit
étre déclenché par un événement.

Un trigger est attaché a une table, et peut étre déclenché par :

— une insertion dans la table (requéte INSERT);
— la suppression d’une partie des données de la table (requéte DELETE) ;
— la modification d'une partie des données de la table (requéte UPDATE).

Par ailleurs, une fois le trigger déclenché, ses instructions peuvent étre exécutées soit juste avant
I'exécution de I’événement déclencheur, soit juste apres.

V.7.1.1.1. Que fait un trigger?

Un trigger exécute un traitement pour chaque ligne insérée, modifiée ou supprimée
par I’événement déclencheur. Donc si 'on insére cinq lignes, les instructions du trigger seront
exécutées cing fois, chaque itération permettant de traiter les données d’une des lignes insérées.

Les instructions d'un trigger suivent les mémes principes que les instructions d’une procédure
stockée. S’il y a plus d’une instruction, il faut les mettre a I'intérieur d’'un bloc d’instructions. Les
structures que nous avons vues dans les deux chapitres précédents sont bien siir utilisables (struc-
tures conditionnelles, boucles, gestionnaires d’erreur, etc.), avec toutefois quelques restrictions
que nous verrons en fin de chapitre.

Un trigger peut modifier et/ou insérer des données dans n’importe quelle table sauf les tables
utilisées dans la requéte qui I’a déclenché. En ce qui concerne la table a laquelle le trigger est
attaché (qui est forcément utilisée par I'événement déclencheur), le trigger peut lire et modifier
uniquement la ligne insérée, modifiée ou supprimée qu’il est en train de traiter.

428

V. Sécuriser et automatiser ses actions

V.7.1.2. A quoi sert un trigger?

On peut faire de nombreuses choses avec un trigger. Voici quelques exemples d’usage fréquent de
ces objets. Nous verrons plus loin certains de ces exemples appliqués a notre élevage d’animaux.

V.7.1.2.1. Contraintes et vérifications de données

Comme cela a déja été mentionné dans le chapitre sur les types de données, MySQL n’implémente
pas de contraintes d’assertion, qui sont des contraintes permettant de limiter les valeurs acceptées
par une colonne (limiter une colonne TINYINT a TRUE (1) ou FALSE (0) par exemple). Avec
des triggers se déclenchant avant 'INSERT et avant I’'UPDATE, on peut vérifier les valeurs d’une
colonne lors de l'insertion ou de la modification, et les corriger si elles ne font pas partie des
valeurs acceptables, ou bien faire échouer la requéte. On peut ainsi pallier ’absence de contraintes
d’assertion.

V.7.1.2.2. Intégrité des données

Les triggers sont parfois utilisés pour remplacer les options des clés étrangeres ON UPDATE RES
TRICT|CASCADE|SET NULL et ON DELETE RESTRICT|CASCADE|SET NULL. Notamment pour
des tables MyISAM, qui sont non-transactionnelles et ne supportent pas les clés étrangeres.
Cela peut aussi étre utilisé avec des tables transactionnelles, dans les cas ou le traitement a
appliquer pour garder des données cohérentes est plus complexe que ce qui est permis par les
options de clés étrangeres.

Par exemple, dans certains systemes, on veut pouvoir appliquer deux systémes de suppression :

— une vraie suppression pure et dure, avec effacement des données, donc une requéte
DELETE;

— un archivage, qui masquera les données dans ’application mais les conservera dans la
base de données.

Dans ce cas, une solution possible est d’ajouter aux tables contenant des données archivables une
colonne archive, pouvant contenir 0 (la ligne n’est pas archivée) ou 1 (la ligne est archivée). Pour
une vraie suppression, on peut utiliser simplement un ON DELETE RESTRICT | CASCADE | SET
NULL, qui se répercutera sur les tables référencant les données supprimées. Par contre, dans
le cas d’un archivage, on utilisera plutét un trigger pour traiter les lignes qui référencent les
données archivées, par exemple en les archivant également.

V.7.1.2.3. Historisation des actions

On veut parfois garder une trace des actions effectuées sur la base de données, c¢’est-a-dire par
exemple, savoir qui a modifié telle ligne, et quand. Avec les triggers, rien de plus simple, il suffit
de mettre a jour des données d’historisation a chaque insertion, modification ou suppression. Soit
directement dans la table concernée, soit dans une table utilisée spécialement et exclusivement
pour garder un historique des actions.

429

V. Sécuriser et automatiser ses actions

V.7.1.2.4. Mise a jour d’informations qui dépendent d’autres données

Comme pour les procédures stockées, une partie de la logique "business” de 'application peut
étre codée directement dans la base de données, grace aux triggers, plutot que du coté applicatif
(en PHP, Java ou quel que soit le langage de programmation utilisé). A nouveau, cela peut
permettre d’harmoniser un traitement & travers plusieurs applications utilisant la méme base de
données.

Par ailleurs, lorsque certaines informations dépendent de la valeur de certaines données, on peut
en général les retrouver en faisant une requéte SELECT. Dans ce cas, il n’est pas indispensable
de stocker ces informations. Cependant, utiliser les triggers pour stocker ces informations peut
faciliter la vie de l'utilisateur, et peut aussi faire gagner en performance. Par exemple, si 'on a
tres souvent besoin de cette information, ou si la requéte a faire pour trouver cette information
est longue a exécuter. C’est typiquement cet usage qui est fait des triggers dans ce qu’on appelle
les "vues matérialisées”, auxquelles un chapitre est consacré dans la partie 6.

V.7.2. Création des triggers

V.7.2.1. Syntaxe

Pour créer un trigger, on utilise la commande suivante :

1 CREATE TRIGGER nom_trigger moment_trigger evenement_trigger
2 |ON nom_table FOR EACH ROW
3 corps_trigger

— CREATE TRIGGER nom_trigger : les triggers ont donc un nom.

— moment_trigger evenement_trigger : servent a définir quand et comment le trigger
est déclenché.

— ON nom_table : c’est la qu’on définit a quelle table le trigger est attaché.

— FOR EACH ROW : signifie littéralement "pour chaque ligne”, sous-entendu "pour chaque
ligne insérée/supprimée/modifiée” selon ce qui a déclenché le trigger.

— corps_trigger : c’est le contenu du trigger. Comme pour les procédures stockées, il
peut s’agir soit d'une seule instruction, soit d’un bloc d’instructions.

V.7.2.1.1. Evénement déclencheur

Trois événements différents peuvent déclencher 'exécution des instructions d’un trigger.

— L’insertion de lignes (INSERT) dans la table attachée au trigger.
— La modification de lignes (UPDATE) de cette table.
— La suppression de lignes (DELETE) de la table.

Un trigger est soit déclenché par INSERT, soit par UPDATE, soit par DELETE. Il ne peut pas étre
déclenché par deux événements différents. On peut par contre créer plusieurs triggers par table
pour couvrir chaque événement.

430

V. Sécuriser et automatiser ses actions

V.7.2.1.2. Avant ou aprés

Lorsqu’un trigger est déclenché, ses instructions peuvent étre exécutées a deux moments différents.
Soit juste avant que I’événement déclencheur n’ait lieu (BEFORE), soit juste apres (AFTER).

Donc, si vous avez un trigger BEFORE UPDATE sur la table A, 'exécution d’une requéte UPDATE
sur cette table va d’abord déclencher ’exécution des instructions du trigger, ensuite seulement
les lignes de la table seront modifiées.

V.7.2.1.3. Exemple

Pour créer un trigger sur la table Animal, déclenché par une insertion, et s’exécutant apres
ladite insertion, on utilisera la syntaxe suivante :

CREATE TRIGGER after_insert_animal AFTER INSERT
ON Animal FOR EACH ROW
corps_trigger;

V.7.2.2. Régle et convention

Il ne peut exister qu’un seul trigger par combinaison moment_trigger/evenement_trigger
par table. Donc un seul trigger BEFORE UPDATE par table, un seul AFTER DELETE, etc. Etant
donné qu’il existe deux possibilités pour le moment d’exécution, et trois pour 1’événement
déclencheur, on a donc un maximum de six triggers par table.

Cette regle étant établie, il existe une convention quant a la maniere de nommer ses triggers,
que je vous encourage a suivre : nom__trigger = moment__evenement_table. Donc le trigger
BEFORE UPDATE ON Animal aura pour nom : before update _animal.

V.7.2.3. OLD et NEW

Dans le corps du trigger, MySQL met a disposition deux mots-clés : OLD et NEW.

— OLD : représente les valeurs des colonnes de la ligne traitée avant qu’elle ne soit modi-
fiée par I’événement déclencheur. Ces valeurs peuvent étre lues, mais pas modifiées.

— NEW : représente les valeurs des colonnes de la ligne traitée apres qu’elle a été modifiée
par I’événement déclencheur. Ces valeurs peuvent étre lues et modifiées.

Il n’y a que dans le cas d'un trigger UPDATE que OLD et NEW coexistent. Lors d’une insertion,
OLD n’existe pas, puisque la ligne n’existe pas avant I’événement déclencheur; dans le cas
d’une suppression, c¢’est NEW qui n’existe pas, puisque la ligne n’existera plus apres 1’événement
déclencheur.

Premier exemple : I'insertion d’une ligne.

Exécutons la commande suivante :

431

V. Sécuriser et automatiser ses actions

INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,

paye)
VALUES (12, 15, NOW(), 200.00, FALSE);

Pendant le traitement de cette ligne par le trigger correspondant,

— NEW.client_id vaudra 12;

— NEW.animal_id vaudra 15;

— NEW.date_reservation vaudra NOW() ;
— NEW.date_adoption vaudra NULL;

— NEW. prix vaudra 200.00;

— NEW.paye vaudra FALSE (0).

Les valeurs de OLD ne seront pas définies. Dans le cas d’une suppression, on aura exactement
I'inverse.

Second exemple : la modification d’une ligne. On modifie la ligne que 'on vient d’insérer en
exécutant la commande suivante :

UPDATE Adoption
SET paye = TRUE
WHERE client_id = 12 AND animal_id = 15;

Pendant le traitement de cette ligne par le trigger correspondant,

— NEW. paye vaudra TRUE, tandis que OLD.paye vaudra FALSE.

— Par contre les valeurs respectives de NEW.animal_id, NEW.client_id, NEW.date_re
servation, NEW.date_adoption et NEW. prix seront les mémes que OLD.animal_1id,
OLD.client_id, OLD.date_reservation, OLD.date_adoptionet OLD.pr1ix, puisque
ces colonnes ne sont pas modifiées par la requéte.

Dans le cas d’une insertion ou d’une modification, si un trigger peut potentiellement
changer la valeur de NEW.colonne, il doit étre exécuté avant 1’événement (BEFORE).
Sinon, la ligne aura déja été insérée ou modifiée, et la modification de NEW.colonne
n’aura plus aucune influence sur celle-ci.

V.7.2.4. Erreur déclenchée pendant un trigger

— Si un trigger BEFORE génére une erreur (non interceptée par un gestionnaire d’erreur), la
requéte ayant déclenché le trigger ne sera pas exécutée. Si I’événement devait également
déclencher un trigger AFTER, il ne sera bien stir pas non plus exécuté.

— Si un trigger AFTER génere une erreur, la requéte ayant déclenché le trigger échouera.

— Dans le cas d'une table transactionnelle, si une erreur est déclenchée, un ROLLBACK sera
fait. Dans le cas d’une table non-transactionnelle, tous les changements qui auraient été
faits par le (ou les) trigger(s) avant le déclenchement de I'erreur persisteront.

432

V. Sécuriser et automatiser ses actions

V.7.3. Suppression des triggers

Encore une fois, la commande DROP permet de supprimer un trigger.

1 DROP TRIGGER nom_trigger;

Tout comme pour les procédures stockées, il n’est pas possible de modifier un trigger. Il faut le
supprimer puis le recréer différemment.

Par ailleurs, si I'on supprime une table, on supprime également tous les triggers qui y sont
attachés.

V.7.4. Exemples

V.7.4.1. Contraintes et vérification des données
V.7.4.1.1. Vérification du sexe des animaux

Dans notre table Animal se trouve la colonne sexe. Cette colonne accepte tout caractere, ou

. Or, seu racter nt du sens. Nous allons donc créer deux triggers, un
NULL. Or, seuls les caracteres "M” et "F” ont du sens. Nous allons donc créer deux triggers,
pour l'insertion, ’autre pour la modification, qui vont empécher qu’on donne un autre caractere
que "M” ou "F” pour sexe.

Ces deux triggers devront se déclencher avant 'insertion et la modification. On aura donc :

1|-- Trigger déclenché par 1'insertion

2 DELIMITER |

3 CREATE TRIGGER before_dinsert_animal BEFORE INSERT
4 /ON Animal FOR EACH ROW

5 BEGIN

6 -— Instructions

7 END |

8

9 | -- Trigger déclenché par la modification

10 CREATE TRIGGER before_update_animal BEFORE UPDATE
11 ON Animal FOR EACH ROW

12 BEGIN

13 -— Instructions

14 END |

15 DELIMITER ;

Il ne reste plus qu’a écrire le code du trigger, qui sera similaire pour les deux triggers. Et comme
ce corps contiendra des instructions, il ne faut pas oublier de changer le délimiteur.

433

V. Sécuriser et automatiser ses actions

Le corps consistera en une simple structure conditionnelle, et définira un comportement a
adopter si le sexe donné ne vaut ni "M”, ni "F” ni NULL

Quel comportement adopter en cas de valeur erronée ?

Deux possibilités :

— on modifie la valeur du sexe, en le mettant a NULL par exemple;
— on provoque une erreur, ce qui empéchera l'insertion/la modification.

Commencons par le plus simple : mettre le sexe a NULL

DELIMITER |
CREATE TRIGGER before_update_animal BEFORE UPDATE
ON Animal FOR EACH ROW

BEGIN
IF NEW.sexe IS NOT NULL -— le sexe n'est ni NULL
AND NEW.sexe != 'M' -— ni "M"
AND NEW.sexe != 'F' -— ni "F"
THEN
SET NEW.sexe = NULL;
END IF;
END |

DELIMITER ;

Test :

UPDATE Animal
SET sexe = 'A'
WHERE id = 20; -- 1l'animal 20 est Balou, un male

SELECT id, sexe, date_naissance, nom
FROM Animal
WHERE +id = 20;

id sexe date naissance

nom

20 NULL 2007-04-24 12:45:00 Balou

Le sexe est bien NULL, le trigger a fonctionné.

Pour le second trigger, déclenché par I'insertion de lignes, on va implémenter le second compor-
tement : on va déclencher une erreur, ce qui empéchera l'insertion, et affichera ’erreur.

434

V. Sécuriser et automatiser ses actions

Mais comment déclencher une erreur ?

Contrairement a certains SGBD, MySQL ne dispose pas d’'une commande permettant de
déclencher une erreur personnalisée. La seule solution est donc de faire une requéte dont on sait
qu’elle va générer une erreur.

Exemple :

SELECT 1, 2 INTO Qa;

ERROR 1222 (21000): The used SELECT statements have a different number of colul

Cependant, il serait quand méme intéressant d’avoir un message d’erreur qui soit un peu explicite.
Voici une maniere d’obtenir un tel message : on crée une table Erreur, ayant deux colonnes, id
et erreur. La colonne id est clé primaire, et erreur contient un texte court décrivant I’erreur. Un
index UNIQUE est ajouté sur cette derniere colonne. On insere ensuite une ligne correspondant a
I’erreur qu’on veut utiliser dans le trigger. Ensuite dans le corps du trigger, en cas de valeur
erronée, on refait la méme insertion. Cela déclenche une erreur de contrainte d’unicité, laquelle
affiche le texte qu’on a essayé d’insérer dans Erreur.

-- Création de la table Erreur

CREATE TABLE Erreur (
id TINYINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
erreur VARCHAR(255) UNIQUE);

-- Insertion de l'erreur qui nous intéresse
INSERT INTO Erreur (erreur) VALUES
("Erreur : sexe doit valoir "M", "F" ou NULL.');

-- Création du trigger

DELIMITER |

CREATE TRIGGER before_tdinsert_animal BEFORE INSERT
ON Animal FOR EACH ROW

BEGIN

IF NEW.sexe IS NOT NULL -— le sexe n'est ni NULL

AND NEW.sexe != 'M' -— ni "M"

AND NEW.sexe != 'F' == [y Y[E™

THEN
INSERT INTO Erreur (erreur) VALUES
('"Erreur : sexe doit valoir "M", "F" ou NULL.');

END IF;

END |

DELIMITER ;

435

V. Sécuriser et automatiser ses actions

Test :

INSERT INTO Animal (nom, sexe, date_naissance, espece_id)
VALUES ('Babar', 'A', '2011-08-04 12:34', 3);

ERROR 1062 (23000): Duplicate entry 'Erreur : sexe doit valoir "M", "F" ou NULI

Et voila, ce n’est pas parfait, mais au moins le message d’erreur permet de cerner d’ou vient le
probleme. Et Babar n’a pas été inséré.

V.7.4.1.2. Vérification du booléen dans Adoption

Il est important de savoir si un client a payé ou non pour les animaux qu’il veut adopter. Il faut
donc vérifier la valeur de ce qu’on inseére dans la colonne paye, et refuser toute insertion/modifi-
cation donnant une valeur différente de TRUE (1) ou FALSE (0). Les deux triggers a créer sont
tres similaires a ce que l'on a fait pour la colonne sexe d’Animal. Essayez donc de construire les
requétes vous-mémes.

INSERT INTO Erreur (erreur) VALUES
("Erreur : paye doit valoir TRUE (1) ou FALSE (0).');

DELIMITER |
CREATE TRIGGER before_dinsert_adoption BEFORE INSERT
ON Adoption FOR EACH ROW

BEGIN
IF NEW.paye != TRUE -- ni TRUE
AND NEW.paye != FALSE -— ni FALSE
THEN
INSERT INTO Erreur (erreur) VALUES
('"Erreur : paye doit valoir TRUE (1) ou FALSE (0).');
END IF;
END |

CREATE TRIGGER before_update_adoption BEFORE UPDATE
ON Adoption FOR EACH ROW

BEGIN
IF NEW.paye != TRUE -- ni TRUE
AND NEW.paye != FALSE -- ni FALSE
THEN
INSERT INTO Erreur (erreur) VALUES
('"Erreur : paye doit valoir TRUE (1) ou FALSE (0).');
END IF;
END |

DELIMITER ;

436

V. Sécuriser et automatiser ses actions

Test :

UPDATE Adoption
SET paye = 3
WHERE client_id = 9;

ERROR 1062 (23000): Duplicate entry 'Erreur : paye doit valoir TRUE (1) ou FAL!

V.7.4.1.3. Vérification de la date d’adoption

Il reste une petite chose a vérifier, et ce sera tout pour les vérifications de données : la date
d’adoption! En effet, celle-ci doit étre postérieure ou égale a la date de réservation. Un client
ne peut pas emporter chez lui un animal avant méme d’avoir prévenu qu’il voulait ’adopter.
A nouveau, essayez de faire le trigger vous-mémes. Pour rappel, il ne peut exister qu’un seul
trigger BEFORE UPDATE et un seul BEFORE INSERT pour chaque table.

INSERT INTO Erreur (erreur) VALUES
('"Erreur : date_adoption doit étre >= a date_reservation.');

DELIMITER |
DROP TRIGGER before_insert_adoption|
CREATE TRIGGER before_insert_adoption BEFORE INSERT
ON Adoption FOR EACH ROW
BEGIN
IF NEW.paye != TRUE -— On
remet la vérification sur paye
AND NEW.paye != FALSE
THEN
INSERT INTO Erreur (erreur) VALUES
('"Erreur : paye doit valoir TRUE (1) ou FALSE (0).');

ELSEIF NEW.date_adoption < NEW.date_reservation THEN ==
Adoption avant réservation
INSERT INTO Erreur (erreur) VALUES
('Erreur : date_adoption doit étre >= a date_reservation.');
END IF;
END |

DROP TRIGGER before_update_adoption|

CREATE TRIGGER before_update_adoption BEFORE UPDATE
ON Adoption FOR EACH ROW

BEGIN

437

V. Sécuriser et automatiser ses actions

22 IF NEW.paye != TRUE -- On
remet la vérification sur paye
23 AND NEW.paye != FALSE
24 THEN
25 INSERT INTO Erreur (erreur) VALUES
('"Erreur : paye doit valoir TRUE (1) ou FALSE (0).');
26
27 ELSEIF NEW.date_adoption < NEW.date_reservation THEN ==
Adoption avant réservation
28 INSERT INTO Erreur (erreur) VALUES
('Erreur : date_adoption doit étre >= a date_reservation.');
29 END IF;
30 END |

31 DELIMITER ;

On aurait pu faire un second IF au lieu d'un ELSEIF, mais de toute facon, le trigger ne pourra
déclencher qu’une erreur a la fois.

Test :

1 INSERT INTO Adoption (animal_id, client_id, date_reservation,
date_adoption, prix, paye)
2 VALUES (10, 10, NOW(), NOW() - INTERVAL 2 DAY, 200.00, 0);

4 ' INSERT INTO Adoption (animal_id, client_id, date_reservation,
date_adoption, prix, paye)
5 VALUES (10, 10, NOW(), NOW(), 200.00, 4);

1| ERROR 1062 (23000): Duplicate entry 'Erreur : date_adoption doit étre >= a dat
2
3 |ERROR 1062 (23000): Duplicate entry 'Erreur : paye doit valoir TRUE (1) ou FAL

Les deux vérifications fonctionnent !

V.7.4.2. Mise a jour d’informations dépendant d’autres données

Pour l'instant, lorsque 1’on a besoin de savoir quels animaux restent disponibles pour I'adoption,
il faut faire une requéte avec sous-requéte.

SELECT id, nom, sexe, date_naissance, commentaires
FROM Animal
WHERE NOT EXISTS (

SELECT *

A OWODNBRE

438

V. Sécuriser et automatiser ses actions

FROM Adoption
WHERE Animal.id = Adoption.animal_-id

)3

Mais une telle requéte n’est pas particulierement performante, et elle est relativement peu facile
a lire. Les triggers peuvent nous permettre de stocker automatiquement une donnée permettant
de savoir immédiatement si un animal est disponible ou non.

Pour cela, il suffit d’ajouter une colonne disponible a la table Animal, qui vaudra FALSE ou
TRUE, et qui sera mise a jour grace a trois triggers sur la table Adoption.

— A linsertion d’une nouvelle adoption, il faut retirer animal adopté des animaux dispo-
nibles ;

— en cas de suppression, il faut faire le contraire ;

— en cas de modification d'une adoption, si I’'animal adopté change, il faut remettre I’ancien
parmi les animaux disponibles et retirer le nouveau.

-- Ajout de la colonne disponible
ALTER TABLE Animal ADD COLUMN disponible BOOLEAN DEFAULT TRUE; -—-
A 1'insertion, un animal est forcément disponible

-- Remplissage de la colonne
UPDATE Animal
SET disponible = FALSE
WHERE EXISTS (
SELECT =*
FROM Adoption
WHERE Animal.id = Adoption.animal_id

)5

-- Création des trois triggers
DELIMITER |
CREATE TRIGGER after_insert_adoption AFTER INSERT
ON Adoption FOR EACH ROW
BEGIN
UPDATE Animal
SET disponible = FALSE
WHERE id = NEW.animal_-id;
END |

CREATE TRIGGER after_delete_adoption AFTER DELETE
ON Adoption FOR EACH ROW
BEGIN
UPDATE Animal
SET disponible = TRUE
WHERE id = OLD.animal_-id;
END |

439

V. Sécuriser et automatiser ses actions

CREATE TRIGGER after_update_adoption AFTER UPDATE

ON Adoption FOR EACH ROW

BEGIN

IF OLD.animal_id <> NEW.animal_id THEN
UPDATE Animal
SET disponible = TRUE

WHERE -d

OLD.animal_-id;

UPDATE Animal
SET disponible = FALSE

WHERE id
END IF;
END |
DELIMITER ;

Test :

SELECT animal_id, nom, sexe, disponible, client_-id

FROM Animal

NEW.animal_-id;

INNER JOIN Adoption ON Adoption.animal_id = Animal.id
WHERE client_id = 9;
animal id nom sexe disponible client_ id
33 Caribou M
54 Bubulle M
55 Relou M

DELETE FROM Adoption

-— 54 doit redevenir disponible

WHERE animal_id = 54;

UPDATE Adoption

SET animal_id = 38, prix = 985.00
-— 38 doit devenir indisponible
33;

WHERE animal_id =

-— et 33 redevenir disponible

INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,

paye)

VALUES (9, 59, NOW(), 700.00, FALSE);
-— 59 doit devenir indisponible

SELECT Animal.id AS animal_id, nom, sexe, disponible, client_-id

440

V. Sécuriser et automatiser ses actions

12

FROM Animal

13 | LEFT JOIN Adoption ON Animal.id =
14 WHERE Animal.id IN (33, 54, 55, 38, 59);

Adoption.animal_-id

animal id nom sexe disponible client_ id
33 Caribou M 1 NULL
38 Boule F 0 9
o4 Bubulle M 1 NULL
25 Relou M 0 9
29 Bavard M 0 9

Désormais, pour savoir quels animaux sont disponibles, il suffira de faire la requéte suivante :

O oo~NOoO U b~ WNEBR

SELECT =*
FROM Animal
WHERE d-isponible = TRUE;

-—— Ou méme
SELECT =«

FROM Animal
WHERE disponible;

V.7.4.3. Historisation

Voici deux exemples de systemes d’historisation :

— T'un tres basique, gardant simplement trace de l'insertion (date et utilisateur) et de
la derniere modification (date et utilisateur), et se faisant directement dans la table

— lautre plus complet, qui garde une copie de chaque version antérieure des lignes dans

concernée ;

une table dédiée, ainsi qu'une copie de la derniére version en cas de suppression.

V.7.4.3.1. Historisation basique

On va utiliser cette historisation pour la table Race. Libre a vous d’adapter ou de créer les

triggers d’autres tables pour les historiser également de cette maniere.

On ajoute donc quatre colonnes a la table. Ces colonnes seront toujours remplies automatiquement

par les triggers.

441

V. Sécuriser et automatiser ses actions

-— On modifie la table Race
ALTER TABLE Race ADD COLUMN date_insertion DATETIME,
-- date d'insertion
ADD COLUMN utilisateur_insertion VARCHAR(20),
-- utilisateur ayant inséré la ligne
ADD COLUMN date_modification DATETIME,
-- date de derniére modification
ADD COLUMN utilisateur_modification VARCHAR(20);
-- utilisateur ayant fait la derniére
modification

-— On remplit les colonnes
UPDATE Race
SET date_insertion = NOW() - INTERVAL 1 DAY,

utilisateur_insertion = 'Test',
date_modification = NOW()- INTERVAL 1 DAY,
utilisateur_modification = 'Test';

J’ai mis artificiellement les dates d’insertion et de derniere modification a la veille d’aujourd’hui, et
les utilisateurs pour l'insertion et la modification a "Test”, afin d’avoir des données intéressantes
lors des tests. Idéalement, ce type d’historisation doit bien stir étre mis en place des la création
de la table.

Occupons-nous maintenant des triggers. Il en faut sur I'insertion et sur la modification.

DELIMITER |
CREATE TRIGGER before_qinsert_race BEFORE INSERT
ON Race FOR EACH ROW
BEGIN
SET NEW.date_insertion = NOW();
SET NEW.utilisateur_insertion = CURRENT_USER();
SET NEW.date_modification = NOW();
SET NEW.utilisateur_modification = CURRENT_USER();
END |

CREATE TRIGGER before_update_race BEFORE UPDATE
ON Race FOR EACH ROW
BEGIN
SET NEW.date_modification = NOW();
SET NEW.utilisateur_modification = CURRENT_USER();
END |
DELIMITER ;

Les triggers sont tres simples : ils mettent simplement a jour les colonnes d’historisation
nécessaires ; ils doivent donc nécessairement étre BEFORE

Test :

442

V. Sécuriser et automatiser ses actions

INSERT INTO Race (nom, description, espece_id, prix)

VALUES ('Yorkshire terrier',
'"'Chien de petite taille au pelage long et soyeux de couleur bleu et feu.',
1, 700.00);

UPDATE Race
SET prix = 630.00
WHERE nom = 'Rottweiller' AND espece_id = 1;

SELECT nom, DATE(date_insertion) AS date_ins, utilisateur_insertion
AS utilisateur_ins, DATE(date_modification) AS date_mod,
utilisateur_modification AS utilisateur_mod

FROM Race

WHERE espece_id = 1;

nom date_ins utilisateur ins date_mod | utilisateur mod
Berger allemand 2012-05-02 Test 2012-05-02 Test
Berger blanc suisse | 2012-05-02 Test 2012-05-02 Test
Rottweiller 2012-05-02 Test 2012-05-03 sdz@localhost
Yorkshire terrier 2012-05-03 sdz@localhost 2012-05-03 sdz@localhost
V.7.4.3.2. Historisation compléte

Nous allons mettre en place un systeme d’historisation complet pour la table Animal. Celle-ci
ne change pas et contiendra la derniere version des données. Par contre, on va ajouter une table
Animal__histo, qui contiendra les versions antérieures (quand il y en a) des données d’Animal.

CREATE TABLE Animal_histo (
id SMALLINT(6) UNSIGNED NOT NULL,
historisées

sexe CHAR(1),
date_naissance DATETIME NOT NULL,

nom VARCHAR(30),
commentaires TEXT,
espece_id SMALLINT(6) UNSIGNED NOT NULL,

-— Colonnes

race_id SMALLINT(6) UNSIGNED DEFAULT NULL,
mere_id SMALLINT(6) UNSIGNED DEFAULT NULL,
pere_id SMALLINT(6) UNSIGNED DEFAULT NULL,
disponible BOOLEAN DEFAULT TRUE,
date_histo DATETIME NOT NULL, -— Colonnes
techniques

443

V. Sécuriser et automatiser ses actions

utilisateur_histo VARCHAR(20) NOT NULL,
evenement_histo CHAR(6) NOT NULL,
PRIMARY KEY (id, date_histo)

) ENGINE=InnoDB;

Les colonnes date histo et utilisateur histo contiendront bien stir la date a laquelle la ligne a été
historisée, et I'utilisateur qui a provoqué cette historisation. Quant a la colonne evenement _histo,
elle contiendra I'événement qui a déclenché le trigger (soit "DELETE”, soit "UPDATE”). La clé
primaire de cette table est le couple (id, date histo).

Voici les triggers nécessaires. Cette fois, ils pourraient étre soit BEFORE, soit AFTER. Cependant,
aucun traitement ne concerne les nouvelles valeurs de la ligne modifiée (ni, a fortiori, de la ligne
supprimée). Par conséquent, autant utiliser AFTER, cela évitera d’exécuter les instructions du
trigger en cas d’erreur lors de la requéte déclenchant celui-ci.

DELIMITER |
CREATE TRIGGER after_update_animal AFTER UPDATE
ON Animal FOR EACH ROW
BEGIN
INSERT INTO Animal_histo (
id,
sexe,
date_naissance,
nom,
commentaires,
espece_1id,
race_id,
mere_id,
pere_id,
disponible,

date_histo,
utilisateur_histo,
evenement_histo)
VALUES (
OLD."d,
OLD. sexe,
OLD.date_naissance,
OLD.nom,
OLD.commentaires,
OLD.espece_1id,
OLD.race_id,
OLD.mere_-d,
OLD.pere_id,
OLD.disponible,

NOW (),
CURRENT_USER() ,

444

V. Sécuriser et automatiser ses actions

'UPDATE') ;
END |

CREATE TRIGGER after_delete_animal AFTER DELETE
ON Animal FOR EACH ROW
BEGIN
INSERT INTO Animal_histo (
id,
sexe,
date_naissance,
nom,
commentaires,
espece_1id,
race_id,
mere_id,
pere_id,
disponible,

date_histo,
utilisateur_histo,
evenement_histo)
VALUES (
OLD.qd,
OLD.sexe,
OLD.date_naissance,
OLD.nom,
OLD.commentaires,
OLD.espece_1d,
OLD.race_1id,
OLD.mere_1d,
OLD.pere_id,
OLD.disponible,

NOW () ,
CURRENT_USER() ,
'DELETE');

END |

DELIMITER ;

Cette fois, ce sont les valeurs avant modification /suppression qui nous intéressent, d’ou I'utilisa-
tion de OLD.

Test :

UPDATE Animal
SET commentaires = 'Petit pour son age'
WHERE id = 10;

445

V. Sécuriser et automatiser ses actions

DELETE FROM Animal
WHERE id = 47;

o N O U

SELECT id, sexe, date_naissance, nom, commentaires, espece_-id

9 FROM Animal
10 WHERE id IN (10, 47);
11
12 ' SELECT id, nom, date_histo, utilisateur_histo, evenement_histo
13 |[FROM Animal_histo;
. date__nais- comimen- .
id sexe nom . espece__i
ot P t'ttgz)ﬁlersson
2010-07-21 eti
10 M 15:41:00 Bobo age !
] . utilisa- evene-
id nom date_ histo teur histo ment_ histo
2012-05-03
10 Bobo %(1)'1521 0152 - sdz@localhost UPDATE
47 Scroupy 91:51:12 sdz@localhost DELETE
V.7.4.3.3. Quelques remarques sur Uhistorisation

Les deux systemes d’historisation montrés dans ce cours ne sont que deux possibilités parmi
des dizaines. Si vous pensez avoir besoin d’un systeme de ce type, prenez le temps de réfléchir,
et de vous renseigner sur les diverses possibilités qui s’offrent a vous. Dans certains systemes,
on combine les deux historisations que j’ai présentées. Parfois, on ne conserve pas les lignes
supprimées dans la table d’historisation, mais on utilise plutét un systeme d’archive, séparé de
I’historisation. Au-dela du modele d’historisation que vous choisirez, les détails sont également
modifiables. Voulez-vous garder toutes les versions des données, ou les garder seulement pour une
certaine période de temps ? Voulez-vous enregistrer 1'utilisateur SQL ou plutét des utilisateurs
créés pour votre application, découplés des utilisateurs SQL 7 Ne restez pas bloqués sur les
exemples montrés dans ce cours (que ce soit pour l'historisation ou le reste), le monde est
vaste !

V.7.5. Restrictions

Les restrictions sur les triggers sont malheureusement trop importantes pour qu’on puisse se
permettre de ne pas les mentionner. On peut espérer qu’une partie de ces restrictions soit levée
dans une prochaine version de MySQL, mais en attendant, il est nécessaire d’avoir celles-ci en
téte. Voici donc les principales.

446

V. Sécuriser et automatiser ses actions

V.7.5.0.1. Commandes interdites

Il est impossible de travailler avec des transactions a ’intérieur d’un trigger. Cette
restriction est nécessaire, puisque la requéte ayant provoqué l'exécution du trigger pourrait
tres bien se trouver elle-méme a l'intérieur d’une transaction. Auquel cas, toute commande
START TRANSACTION, COMMIT ou ROLLBACK interagirait avec cette transaction, de maniere
intempestive.

Les requétes préparées ne peuvent pas non plus étre utilisées.
Enfin, on ne peut pas appeler n’importe quelle procédure a partir d'un trigger.

— Les procédures appelées par un trigger ne peuvent pas envoyer d’informations au
client MySQL. Par exemple, elles ne peuvent pas exécuter un simple SELECT, qui
produit un affichage dans le client (un SELECT...INTO par contre est permis). Elles
peuvent toutefois renvoyer des informations au trigger grace a des parametres OUT ou
INOUT.

— Les procédures appelées ne peuvent utiliser ni les transactions (START TRANSACTION, COM
MIT ou ROLLBACK) ni les requétes préparées. C’est-a-dire qu’elles doivent respecter
les restrictions des triggers.

V.7.5.0.2. Tables utilisées par la requéte

Comme mentionné auparavant, il est impossible de modifier les données d’une table
utilisée par la requéte ayant déclenché le trigger a l'intérieur de celui-ci.

Cette restriction est importante, et peut remettre en question I'utilisation de certains triggers.

Exemple : le trigger AFTER INSERT ON Adoption modifie les données de la table Animal. Si
I'on exécute la requéte suivante, cela posera probleme.

INSERT INTO Adoption (animal_id, client_id, date_reservation, prix,
paye)

SELECT Animal.id, 4, NOW(), COALESCE(Race.prix, Espece.prix), FALSE

FROM Animal

INNER JOIN Espece ON Espece.id = Animal.espece_id

LEFT JOIN Race ON Race.id = Animal.race_1id

WHERE Animal.nom = 'Boucan' AND Animal.espece_id = 2;

ERROR 1442 (HY000): Can't update table 'animal' in stored function/trigger bec:

Le trigger échoue puisque la table Animal est utilisée par la requéte INSERT qui le déclenche.
L’insertion elle-méme est donc finalement annulée.

447

V. Sécuriser et automatiser ses actions

V.7.5.0.3. Clés étrangeres

Une suppression ou modification de données déclenchée par une clé étrangere ne
provoquera pas l’exécution du trigger correspondant. Par exemple, la colonne Ani-
mal.race_id possede une clé étrangere, qui référence la colonne Race.id. Cette clé étrangere a
été définie avec I'option ON DELETE SET NULL. Donc en cas de suppression d’une race, tous les
animaux de cette race seront modifiés, et leur race_id changée en NULL. Il s’agit donc d’'une
modification de données. Mais comme cette modification a été déclenchée par une contrainte de
clé étrangere, les éventuels triggers BEFORE UPDATE et AFTER UPDATE de la table Animal ne
seront pas déclenchés.

En cas d’utilisation de triggers sur des tables présentant des clés étrangeres avec ces options, il
vaut donc mieux supprimer celles-ci et déplacer ce comportement dans des triggers. Une autre
solution est de ne pas utiliser les triggers sur les tables concernées. Vous pouvez alors remplacer
les triggers par 'utilisation de procédures stockées et/ou de transactions.

Qu’avons-nous comme clés étrangeres dans nos tables?

— Race : CONSTRAINT fk_race_espece_id FOREIGN KEY (espece_id) REFERENCES
Espece (id) ON DELETE CASCADE;

— Animal : CONSTRAINT fk_race_id FOREIGN KEY (race_id) REFERENCES Race (1id)
ON DELETE SET NULL;

— Animal : CONSTRAINT fk_espece_id FOREIGN KEY (espece_id) REFERENCES Es
pece (id);

— Animal : CONSTRAINT fk_mere_id FOREIGN KEY (mere_id) REFERENCES Animal
(id) ON DELETE SET NULL;

— Animal : CONSTRAINT fk_pere_id FOREIGN KEY (pere_id) REFERENCES Animal
(id) ON DELETE SET NULL;

Quatre d’entre elles pourraient donc poser probleme. Quatre, sur cing! Ce n’est donc pas anodin
comme restriction !

On va donc modifier nos clés étrangeres pour qu’elles reprennent leur comportement par défaut.
Il faudra ensuite créer (ou recréer) quelques triggers pour reproduire le comportement que 1’'on
avait défini. A ceci prés que la restriction sur la modification des données d’une table utilisée
par I’événement déclencheur fait qu’on ne pourra pas reproduire certains comportements. On
ne pourra pas mettre a NULL les colonnes pere id et mere_id de la table Animal en cas de
suppression de ’animal de référence.

Voici les commandes :

-- On supprime les clés
ALTER TABLE Race DROP FOREIGN KEY fk_race_espece_-id;
ALTER TABLE Animal DROP FOREIGN KEY fk_race_id,

DROP FOREIGN KEY fk_mere_1id,

DROP FOREIGN KEY fk_pere_id;

448

V. Sécuriser et automatiser ses actions

-- 0On les recrée sans option
ALTER TABLE Race ADD CONSTRAINT fk_race_espece_id FOREIGN KEY
(espece_id) REFERENCES Espece (id);
ALTER TABLE Animal ADD CONSTRAINT fk_race_id FOREIGN KEY (race_1id)
REFERENCES Race (id),
ADD CONSTRAINT fk_mere_id FOREIGN KEY (mere_qid)
REFERENCES Animal (id),
ADD CONSTRAINT fk_pere_id FOREIGN KEY (pere_-id)
REFERENCES Animal (id);

-- Trigger sur Race
DELIMITER |
CREATE TRIGGER before_delete_race BEFORE DELETE
ON Race FOR EACH ROW
BEGIN
UPDATE Animal
SET race_id = NULL
WHERE race_id = OLD.1d;
END |

-- Trigger sur Espece
CREATE TRIGGER before_delete_espece BEFORE DELETE
ON Espece FOR EACH ROW
BEGIN
DELETE FROM Race
WHERE espece_id = OLD.1d;
END |
DELIMITER ;

V.7.5.1. Enrésumé

— Un trigger est un objet stocké dans la base de données, a la maniere d'une table ou
d’une procédure stockée. La seule différence est qu’un trigger est lié a une table, donc
en cas de suppression d’une table, les triggers liés a celle-ci sont supprimés également

— Un trigger définit une ou plusieurs instructions, dont l'exécution est déclenchée
par une insertion, une modification ou une suppression de données dans la table
a laquelle le trigger est lié.

— Les instructions du trigger peuvent étre exécutées avant la requéte ayant déclenché
celui-ci, ou apres. Ce comportement est a définir a la création du trigger.

— Une table ne peut posséder quun seul trigger par combinaison événement/moment
(BEFORE UPDATE, AFTER DELETEWJ

— Les triggers sous MySQL sont soumis a d’importantes (et potentiellement trés génantes)
restrictions.

Sécuriser une base de données et automatiser les traitements ne se limite bien stir pas a ce que

449

V. Sécuriser et automatiser ses actions

nous venons de voir. Les deux prochaines parties vous donneront de nouveaux outils pour avoir
une base de données bien construite, siire et efficace. Cependant, tout ne pourra pas étre abordé
dans ce cours, donc n’hésitez pas a poursuivre votre apprentissage.

450

	V Sécuriser et automatiser ses actions
	V.7 Triggers
	V.7.1 Principe et usage
	V.7.1.1 Qu'est-ce qu'un trigger ?
	V.7.1.2 À quoi sert un trigger ?

	V.7.2 Création des triggers
	V.7.2.1 Syntaxe
	V.7.2.2 Règle et convention
	V.7.2.3 OLD et NEW
	V.7.2.4 Erreur déclenchée pendant un trigger

	V.7.3 Suppression des triggers
	V.7.4 Exemples
	V.7.4.1 Contraintes et vérification des données
	V.7.4.2 Mise à jour d'informations dépendant d'autres données
	V.7.4.3 Historisation

	V.7.5 Restrictions
	V.7.5.1 En résumé

