
V.7. Triggers

Les triggers (ou déclencheurs) sont des objets de la base de données. Attachés à une table, ils
vont déclencher l’exécution d’une instruction, ou d’un bloc d’instructions, lorsqu’une,
ou plusieurs lignes sont insérées, supprimées ou modifiées dans la table à laquelle ils
sont attachés.

Dans ce chapitre, nous allons voir comment ils fonctionnent exactement, comment on peut les
créer et les supprimer, et surtout, comment on peut s’en servir et quelles sont leurs restrictions.

V.7.1. Principe et usage

V.7.1.1. Qu’est-ce qu’un trigger?

Tout comme les procédures stockées, les triggers servent à exécuter une ou plusieurs instructions.
Mais à la différence des procédures, il n’est pas possible d’appeler un trigger : un trigger doit
être déclenché par un événement.

Un trigger est attaché à une table, et peut être déclenché par :

— une insertion dans la table (requête INSERT) ;
— la suppression d’une partie des données de la table (requête DELETE) ;
— la modification d’une partie des données de la table (requête UPDATE).

Par ailleurs, une fois le trigger déclenché, ses instructions peuvent être exécutées soit juste avant
l’exécution de l’événement déclencheur, soit juste après.

V.7.1.1.1. Que fait un trigger?

Un trigger exécute un traitement pour chaque ligne insérée, modifiée ou supprimée
par l’événement déclencheur. Donc si l’on insère cinq lignes, les instructions du trigger seront
exécutées cinq fois, chaque itération permettant de traiter les données d’une des lignes insérées.

Les instructions d’un trigger suivent les mêmes principes que les instructions d’une procédure
stockée. S’il y a plus d’une instruction, il faut les mettre à l’intérieur d’un bloc d’instructions. Les
structures que nous avons vues dans les deux chapitres précédents sont bien sûr utilisables (struc-
tures conditionnelles, boucles, gestionnaires d’erreur, etc.), avec toutefois quelques restrictions
que nous verrons en fin de chapitre.

Un trigger peut modifier et/ou insérer des données dans n’importe quelle table sauf les tables
utilisées dans la requête qui l’a déclenché. En ce qui concerne la table à laquelle le trigger est
attaché (qui est forcément utilisée par l’événement déclencheur), le trigger peut lire et modifier
uniquement la ligne insérée, modifiée ou supprimée qu’il est en train de traiter.

428

V. Sécuriser et automatiser ses actions

V.7.1.2. À quoi sert un trigger?

On peut faire de nombreuses choses avec un trigger. Voici quelques exemples d’usage fréquent de
ces objets. Nous verrons plus loin certains de ces exemples appliqués à notre élevage d’animaux.

V.7.1.2.1. Contraintes et vérifications de données

Comme cela a déjà été mentionné dans le chapitre sur les types de données, MySQL n’implémente
pas de contraintes d’assertion, qui sont des contraintes permettant de limiter les valeurs acceptées
par une colonne (limiter une colonne TINYINT à TRUE (1) ou FALSE (0) par exemple). Avec
des triggers se déclenchant avant l’INSERT et avant l’UPDATE, on peut vérifier les valeurs d’une
colonne lors de l’insertion ou de la modification, et les corriger si elles ne font pas partie des
valeurs acceptables, ou bien faire échouer la requête. On peut ainsi pallier l’absence de contraintes
d’assertion.

V.7.1.2.2. Intégrité des données

Les triggers sont parfois utilisés pour remplacer les options des clés étrangères ON UPDATE RES
TRICT|CASCADE|SET NULL et ON DELETE RESTRICT|CASCADE|SET NULL. Notamment pour
des tables MyISAM, qui sont non-transactionnelles et ne supportent pas les clés étrangères.
Cela peut aussi être utilisé avec des tables transactionnelles, dans les cas où le traitement à
appliquer pour garder des données cohérentes est plus complexe que ce qui est permis par les
options de clés étrangères.

Par exemple, dans certains systèmes, on veut pouvoir appliquer deux systèmes de suppression :

— une vraie suppression pure et dure, avec effacement des données, donc une requête
DELETE ;

— un archivage, qui masquera les données dans l’application mais les conservera dans la
base de données.

Dans ce cas, une solution possible est d’ajouter aux tables contenant des données archivables une
colonne archive, pouvant contenir 0 (la ligne n’est pas archivée) ou 1 (la ligne est archivée). Pour
une vraie suppression, on peut utiliser simplement un ON DELETE RESTRICT|CASCADE|SET
NULL, qui se répercutera sur les tables référençant les données supprimées. Par contre, dans
le cas d’un archivage, on utilisera plutôt un trigger pour traiter les lignes qui référencent les
données archivées, par exemple en les archivant également.

V.7.1.2.3. Historisation des actions

On veut parfois garder une trace des actions effectuées sur la base de données, c’est-à-dire par
exemple, savoir qui a modifié telle ligne, et quand. Avec les triggers, rien de plus simple, il suffit
de mettre à jour des données d’historisation à chaque insertion, modification ou suppression. Soit
directement dans la table concernée, soit dans une table utilisée spécialement et exclusivement
pour garder un historique des actions.

429

V. Sécuriser et automatiser ses actions

V.7.1.2.4. Mise à jour d’informations qui dépendent d’autres données

Comme pour les procédures stockées, une partie de la logique ”business” de l’application peut
être codée directement dans la base de données, grâce aux triggers, plutôt que du côté applicatif
(en PHP, Java ou quel que soit le langage de programmation utilisé). À nouveau, cela peut
permettre d’harmoniser un traitement à travers plusieurs applications utilisant la même base de
données.

Par ailleurs, lorsque certaines informations dépendent de la valeur de certaines données, on peut
en général les retrouver en faisant une requête SELECT. Dans ce cas, il n’est pas indispensable
de stocker ces informations. Cependant, utiliser les triggers pour stocker ces informations peut
faciliter la vie de l’utilisateur, et peut aussi faire gagner en performance. Par exemple, si l’on a
très souvent besoin de cette information, ou si la requête à faire pour trouver cette information
est longue à exécuter. C’est typiquement cet usage qui est fait des triggers dans ce qu’on appelle
les ”vues matérialisées”, auxquelles un chapitre est consacré dans la partie 6.

V.7.2. Création des triggers

V.7.2.1. Syntaxe

Pour créer un trigger, on utilise la commande suivante :

 CREATE TRIGGER nom_trigger moment_trigger evenement_trigger
 ON nom_table FOR EACH ROW
 corps_trigger

— CREATE TRIGGER nom_trigger : les triggers ont donc un nom.
— moment_trigger evenement_trigger : servent à définir quand et comment le trigger

est déclenché.
— ON nom_table : c’est là qu’on définit à quelle table le trigger est attaché.
— FOR EACH ROW : signifie littéralement ”pour chaque ligne”, sous-entendu ”pour chaque

ligne insérée/supprimée/modifiée” selon ce qui a déclenché le trigger.
— corps_trigger : c’est le contenu du trigger. Comme pour les procédures stockées, il

peut s’agir soit d’une seule instruction, soit d’un bloc d’instructions.

V.7.2.1.1. Événement déclencheur

Trois événements différents peuvent déclencher l’exécution des instructions d’un trigger.

— L’insertion de lignes (INSERT) dans la table attachée au trigger.
— La modification de lignes (UPDATE) de cette table.
— La suppression de lignes (DELETE) de la table.

Un trigger est soit déclenché par INSERT, soit par UPDATE, soit par DELETE. Il ne peut pas être
déclenché par deux événements différents. On peut par contre créer plusieurs triggers par table
pour couvrir chaque événement.

430

V. Sécuriser et automatiser ses actions

V.7.2.1.2. Avant ou après

Lorsqu’un trigger est déclenché, ses instructions peuvent être exécutées à deux moments différents.
Soit juste avant que l’événement déclencheur n’ait lieu (BEFORE), soit juste après (AFTER).

Donc, si vous avez un trigger BEFORE UPDATE sur la table A, l’exécution d’une requête UPDATE
sur cette table va d’abord déclencher l’exécution des instructions du trigger, ensuite seulement
les lignes de la table seront modifiées.

V.7.2.1.3. Exemple

Pour créer un trigger sur la table Animal, déclenché par une insertion, et s’exécutant après
ladite insertion, on utilisera la syntaxe suivante :

 CREATE TRIGGER after_insert_animal AFTER INSERT
 ON Animal FOR EACH ROW
 corps_trigger;

V.7.2.2. Règle et convention

Il ne peut exister qu’un seul trigger par combinaison moment_trigger/evenement_trigger
par table. Donc un seul trigger BEFORE UPDATE par table, un seul AFTER DELETE, etc. Étant
donné qu’il existe deux possibilités pour le moment d’exécution, et trois pour l’événement
déclencheur, on a donc un maximum de six triggers par table.

Cette règle étant établie, il existe une convention quant à la manière de nommer ses triggers,
que je vous encourage à suivre : nom_trigger = moment_evenement_table. Donc le trigger
BEFORE UPDATE ON Animal aura pour nom : before_update_animal.

V.7.2.3. OLD et NEW

Dans le corps du trigger, MySQL met à disposition deux mots-clés : OLD et NEW.

— OLD : représente les valeurs des colonnes de la ligne traitée avant qu’elle ne soit modi-
fiée par l’événement déclencheur. Ces valeurs peuvent être lues, mais pas modifiées.

— NEW : représente les valeurs des colonnes de la ligne traitée après qu’elle a été modifiée
par l’événement déclencheur. Ces valeurs peuvent être lues et modifiées.

Il n’y a que dans le cas d’un trigger UPDATE que OLD et NEW coexistent. Lors d’une insertion,
OLD n’existe pas, puisque la ligne n’existe pas avant l’événement déclencheur ; dans le cas
d’une suppression, c’est NEW qui n’existe pas, puisque la ligne n’existera plus après l’événement
déclencheur.

Premier exemple : l’insertion d’une ligne.

Exécutons la commande suivante :

431

V. Sécuriser et automatiser ses actions

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,
paye)

 VALUES (12, 15, NOW(), 200.00, FALSE);

Pendant le traitement de cette ligne par le trigger correspondant,

— NEW.client_id vaudra 12 ;
— NEW.animal_id vaudra 15 ;
— NEW.date_reservation vaudra NOW() ;
— NEW.date_adoption vaudra NULL ;
— NEW.prix vaudra 200.00 ;
— NEW.paye vaudra FALSE (0).

Les valeurs de OLD ne seront pas définies. Dans le cas d’une suppression, on aura exactement
l’inverse.

Second exemple : la modification d’une ligne. On modifie la ligne que l’on vient d’insérer en
exécutant la commande suivante :

 UPDATE Adoption
 SET paye = TRUE
 WHERE client_id = 12 AND animal_id = 15;

Pendant le traitement de cette ligne par le trigger correspondant,

— NEW.paye vaudra TRUE, tandis que OLD.paye vaudra FALSE.
— Par contre les valeurs respectives de NEW.animal_id, NEW.client_id, NEW.date_re

servation, NEW.date_adoption et NEW.prix seront les mêmes que OLD.animal_id,
OLD.client_id, OLD.date_reservation, OLD.date_adoption et OLD.prix, puisque
ces colonnes ne sont pas modifiées par la requête.

!
Dans le cas d’une insertion ou d’une modification, si un trigger peut potentiellement
changer la valeur de NEW.colonne, il doit être exécuté avant l’événement (BEFORE).
Sinon, la ligne aura déjà été insérée ou modifiée, et la modification de NEW.colonne
n’aura plus aucune influence sur celle-ci.

V.7.2.4. Erreur déclenchée pendant un trigger
— Si un trigger BEFORE génère une erreur (non interceptée par un gestionnaire d’erreur), la

requête ayant déclenché le trigger ne sera pas exécutée. Si l’événement devait également
déclencher un trigger AFTER, il ne sera bien sûr pas non plus exécuté.

— Si un trigger AFTER génère une erreur, la requête ayant déclenché le trigger échouera.
— Dans le cas d’une table transactionnelle, si une erreur est déclenchée, un ROLLBACK sera

fait. Dans le cas d’une table non-transactionnelle, tous les changements qui auraient été
faits par le (ou les) trigger(s) avant le déclenchement de l’erreur persisteront.

432

V. Sécuriser et automatiser ses actions

V.7.3. Suppression des triggers

Encore une fois, la commande DROP permet de supprimer un trigger.

 DROP TRIGGER nom_trigger;

Tout comme pour les procédures stockées, il n’est pas possible de modifier un trigger. Il faut le
supprimer puis le recréer différemment.

Par ailleurs, si l’on supprime une table, on supprime également tous les triggers qui y sont
attachés.

V.7.4. Exemples

V.7.4.1. Contraintes et vérification des données

V.7.4.1.1. Vérification du sexe des animaux

Dans notre table Animal se trouve la colonne sexe. Cette colonne accepte tout caractère, ou
NULL. Or, seuls les caractères ”M” et ”F” ont du sens. Nous allons donc créer deux triggers, un
pour l’insertion, l’autre pour la modification, qui vont empêcher qu’on donne un autre caractère
que ”M” ou ”F” pour sexe.

Ces deux triggers devront se déclencher avant l’insertion et la modification. On aura donc :

 -- Trigger déclenché par l'insertion
 DELIMITER |
 CREATE TRIGGER before_insert_animal BEFORE INSERT
 ON Animal FOR EACH ROW
 BEGIN
 -- Instructions
 END |

 -- Trigger déclenché par la modification
 CREATE TRIGGER before_update_animal BEFORE UPDATE
 ON Animal FOR EACH ROW
 BEGIN
 -- Instructions
 END |
 DELIMITER ;

Il ne reste plus qu’à écrire le code du trigger, qui sera similaire pour les deux triggers. Et comme
ce corps contiendra des instructions, il ne faut pas oublier de changer le délimiteur.

433

V. Sécuriser et automatiser ses actions

Le corps consistera en une simple structure conditionnelle, et définira un comportement à
adopter si le sexe donné ne vaut ni ”M”, ni ”F”, ni NULL.

?
Quel comportement adopter en cas de valeur erronée ?

Deux possibilités :

— on modifie la valeur du sexe, en le mettant à NULL par exemple ;
— on provoque une erreur, ce qui empêchera l’insertion/la modification.

Commençons par le plus simple : mettre le sexe à NULL.

 DELIMITER |
 CREATE TRIGGER before_update_animal BEFORE UPDATE
 ON Animal FOR EACH ROW
 BEGIN
 IF NEW.sexe IS NOT NULL -- le sexe n'est ni NULL
 AND NEW.sexe != 'M' -- ni "M"
 AND NEW.sexe != 'F' -- ni "F"
 THEN
 SET NEW.sexe = NULL;
 END IF;
 END |
 DELIMITER ;

Test :

 UPDATE Animal
 SET sexe = 'A'
 WHERE id = 20; -- l'animal 20 est Balou, un mâle

 SELECT id, sexe, date_naissance, nom
 FROM Animal
 WHERE id = 20;

id sexe date_naissance nom

20 NULL 2007-04-24 12:45:00 Balou

Le sexe est bien NULL, le trigger a fonctionné.

Pour le second trigger, déclenché par l’insertion de lignes, on va implémenter le second compor-
tement : on va déclencher une erreur, ce qui empêchera l’insertion, et affichera l’erreur.

434

V. Sécuriser et automatiser ses actions

?
Mais comment déclencher une erreur ?

Contrairement à certains SGBD, MySQL ne dispose pas d’une commande permettant de
déclencher une erreur personnalisée. La seule solution est donc de faire une requête dont on sait
qu’elle va générer une erreur.

Exemple :

 SELECT 1, 2 INTO @a;

 ERROR 1222 (21000): The used SELECT statements have a different number of columns

Cependant, il serait quand même intéressant d’avoir un message d’erreur qui soit un peu explicite.
Voici une manière d’obtenir un tel message : on crée une table Erreur, ayant deux colonnes, id
et erreur. La colonne id est clé primaire, et erreur contient un texte court décrivant l’erreur. Un
index UNIQUE est ajouté sur cette dernière colonne. On insère ensuite une ligne correspondant à
l’erreur qu’on veut utiliser dans le trigger. Ensuite dans le corps du trigger, en cas de valeur
erronée, on refait la même insertion. Cela déclenche une erreur de contrainte d’unicité, laquelle
affiche le texte qu’on a essayé d’insérer dans Erreur.

 -- Création de la table Erreur
 CREATE TABLE Erreur (
 id TINYINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 erreur VARCHAR(255) UNIQUE);

 -- Insertion de l'erreur qui nous intéresse
 INSERT INTO Erreur (erreur) VALUES

('Erreur : sexe doit valoir "M", "F" ou NULL.');

 -- Création du trigger
 DELIMITER |
 CREATE TRIGGER before_insert_animal BEFORE INSERT
 ON Animal FOR EACH ROW
 BEGIN
 IF NEW.sexe IS NOT NULL -- le sexe n'est ni NULL
 AND NEW.sexe != 'M' -- ni "M"
 AND NEW.sexe != 'F' -- ni "F"
 THEN
 INSERT INTO Erreur (erreur) VALUES

('Erreur : sexe doit valoir "M", "F" ou NULL.');
 END IF;
 END |
 DELIMITER ;

435

V. Sécuriser et automatiser ses actions

Test :

 INSERT INTO Animal (nom, sexe, date_naissance, espece_id)
 VALUES ('Babar', 'A', '2011-08-04 12:34', 3);

 ERROR 1062 (23000): Duplicate entry 'Erreur : sexe doit valoir "M", "F" ou NULL.' for key 'erreur'

Et voilà, ce n’est pas parfait, mais au moins le message d’erreur permet de cerner d’où vient le
problème. Et Babar n’a pas été inséré.

V.7.4.1.2. Vérification du booléen dans Adoption

Il est important de savoir si un client a payé ou non pour les animaux qu’il veut adopter. Il faut
donc vérifier la valeur de ce qu’on insère dans la colonne paye, et refuser toute insertion/modifi-
cation donnant une valeur différente de TRUE (1) ou FALSE (0). Les deux triggers à créer sont
très similaires à ce que l’on a fait pour la colonne sexe d’Animal. Essayez donc de construire les
requêtes vous-mêmes.

 INSERT INTO Erreur (erreur) VALUES
('Erreur : paye doit valoir TRUE (1) ou FALSE (0).');

 DELIMITER |
 CREATE TRIGGER before_insert_adoption BEFORE INSERT
 ON Adoption FOR EACH ROW
 BEGIN
 IF NEW.paye != TRUE -- ni TRUE
 AND NEW.paye != FALSE -- ni FALSE
 THEN
 INSERT INTO Erreur (erreur) VALUES

('Erreur : paye doit valoir TRUE (1) ou FALSE (0).');
 END IF;
 END |

 CREATE TRIGGER before_update_adoption BEFORE UPDATE
 ON Adoption FOR EACH ROW
 BEGIN
 IF NEW.paye != TRUE -- ni TRUE
 AND NEW.paye != FALSE -- ni FALSE
 THEN
 INSERT INTO Erreur (erreur) VALUES

('Erreur : paye doit valoir TRUE (1) ou FALSE (0).');
 END IF;
 END |
 DELIMITER ;

436

V. Sécuriser et automatiser ses actions

Test :

 UPDATE Adoption
 SET paye = 3
 WHERE client_id = 9;

 ERROR 1062 (23000): Duplicate entry 'Erreur : paye doit valoir TRUE (1) ou FALSE (0)' for key 'erreur'

V.7.4.1.3. Vérification de la date d’adoption

Il reste une petite chose à vérifier, et ce sera tout pour les vérifications de données : la date
d’adoption ! En effet, celle-ci doit être postérieure ou égale à la date de réservation. Un client
ne peut pas emporter chez lui un animal avant même d’avoir prévenu qu’il voulait l’adopter.
À nouveau, essayez de faire le trigger vous-mêmes. Pour rappel, il ne peut exister qu’un seul
trigger BEFORE UPDATE et un seul BEFORE INSERT pour chaque table.

 INSERT INTO Erreur (erreur) VALUES
('Erreur : date_adoption doit être >= à date_reservation.');

 DELIMITER |
 DROP TRIGGER before_insert_adoption|
 CREATE TRIGGER before_insert_adoption BEFORE INSERT
 ON Adoption FOR EACH ROW
 BEGIN
 IF NEW.paye != TRUE -- On

remet la vérification sur paye
 AND NEW.paye != FALSE
 THEN
 INSERT INTO Erreur (erreur) VALUES

('Erreur : paye doit valoir TRUE (1) ou FALSE (0).');

 ELSEIF NEW.date_adoption < NEW.date_reservation THEN --

Adoption avant réservation
 INSERT INTO Erreur (erreur) VALUES

('Erreur : date_adoption doit être >= à date_reservation.');
 END IF;
 END |

 DROP TRIGGER before_update_adoption|
 CREATE TRIGGER before_update_adoption BEFORE UPDATE
 ON Adoption FOR EACH ROW
 BEGIN

437

V. Sécuriser et automatiser ses actions

 IF NEW.paye != TRUE -- On
remet la vérification sur paye

 AND NEW.paye != FALSE
 THEN
 INSERT INTO Erreur (erreur) VALUES

('Erreur : paye doit valoir TRUE (1) ou FALSE (0).');

 ELSEIF NEW.date_adoption < NEW.date_reservation THEN --

Adoption avant réservation
 INSERT INTO Erreur (erreur) VALUES

('Erreur : date_adoption doit être >= à date_reservation.');
 END IF;
 END |
 DELIMITER ;

On aurait pu faire un second IF au lieu d’un ELSEIF, mais de toute façon, le trigger ne pourra
déclencher qu’une erreur à la fois.

Test :

 INSERT INTO Adoption (animal_id, client_id, date_reservation,
date_adoption, prix, paye)

 VALUES (10, 10, NOW(), NOW() - INTERVAL 2 DAY, 200.00, 0);

 INSERT INTO Adoption (animal_id, client_id, date_reservation,

date_adoption, prix, paye)
 VALUES (10, 10, NOW(), NOW(), 200.00, 4);

 ERROR 1062 (23000): Duplicate entry 'Erreur : date_adoption doit être >= à date_reservation.' for key 'erreur'

 ERROR 1062 (23000): Duplicate entry 'Erreur : paye doit valoir TRUE (1) ou FALSE (0).' for key 'erreur'

Les deux vérifications fonctionnent !

V.7.4.2. Mise à jour d’informations dépendant d’autres données

Pour l’instant, lorsque l’on a besoin de savoir quels animaux restent disponibles pour l’adoption,
il faut faire une requête avec sous-requête.

 SELECT id, nom, sexe, date_naissance, commentaires
 FROM Animal
 WHERE NOT EXISTS (
 SELECT *

438

V. Sécuriser et automatiser ses actions

 FROM Adoption
 WHERE Animal.id = Adoption.animal_id
);

Mais une telle requête n’est pas particulièrement performante, et elle est relativement peu facile
à lire. Les triggers peuvent nous permettre de stocker automatiquement une donnée permettant
de savoir immédiatement si un animal est disponible ou non.

Pour cela, il suffit d’ajouter une colonne disponible à la table Animal, qui vaudra FALSE ou
TRUE, et qui sera mise à jour grâce à trois triggers sur la table Adoption.

— À l’insertion d’une nouvelle adoption, il faut retirer l’animal adopté des animaux dispo-
nibles ;

— en cas de suppression, il faut faire le contraire ;
— en cas de modification d’une adoption, si l’animal adopté change, il faut remettre l’ancien

parmi les animaux disponibles et retirer le nouveau.

 -- Ajout de la colonne disponible
 ALTER TABLE Animal ADD COLUMN disponible BOOLEAN DEFAULT TRUE; --

À l'insertion, un animal est forcément disponible

 -- Remplissage de la colonne
 UPDATE Animal
 SET disponible = FALSE
 WHERE EXISTS (
 SELECT *
 FROM Adoption
 WHERE Animal.id = Adoption.animal_id
);

 -- Création des trois triggers
 DELIMITER |
 CREATE TRIGGER after_insert_adoption AFTER INSERT
 ON Adoption FOR EACH ROW
 BEGIN
 UPDATE Animal
 SET disponible = FALSE
 WHERE id = NEW.animal_id;
 END |

 CREATE TRIGGER after_delete_adoption AFTER DELETE
 ON Adoption FOR EACH ROW
 BEGIN
 UPDATE Animal
 SET disponible = TRUE
 WHERE id = OLD.animal_id;
 END |

439

V. Sécuriser et automatiser ses actions

 CREATE TRIGGER after_update_adoption AFTER UPDATE
 ON Adoption FOR EACH ROW
 BEGIN
 IF OLD.animal_id <> NEW.animal_id THEN
 UPDATE Animal
 SET disponible = TRUE
 WHERE id = OLD.animal_id;

 UPDATE Animal
 SET disponible = FALSE
 WHERE id = NEW.animal_id;
 END IF;
 END |
 DELIMITER ;

Test :

 SELECT animal_id, nom, sexe, disponible, client_id
 FROM Animal
 INNER JOIN Adoption ON Adoption.animal_id = Animal.id
 WHERE client_id = 9;

animal_id nom sexe disponible client_id

33 Caribou M 0 9

54 Bubulle M 0 9

55 Relou M 0 9

 DELETE FROM Adoption
-- 54 doit redevenir disponible

 WHERE animal_id = 54;

 UPDATE Adoption
 SET animal_id = 38, prix = 985.00

-- 38 doit devenir indisponible
 WHERE animal_id = 33;

-- et 33 redevenir disponible

 INSERT INTO Adoption (client_id, animal_id, date_reservation, prix,

paye)
 VALUES (9, 59, NOW(), 700.00, FALSE);

-- 59 doit devenir indisponible

 SELECT Animal.id AS animal_id, nom, sexe, disponible, client_id

440

V. Sécuriser et automatiser ses actions

 FROM Animal
 LEFT JOIN Adoption ON Animal.id = Adoption.animal_id
 WHERE Animal.id IN (33, 54, 55, 38, 59);

animal_id nom sexe disponible client_id

33 Caribou M 1 NULL

38 Boule F 0 9

54 Bubulle M 1 NULL

55 Relou M 0 9

59 Bavard M 0 9

Désormais, pour savoir quels animaux sont disponibles, il suffira de faire la requête suivante :

 SELECT *
 FROM Animal
 WHERE disponible = TRUE;

 -- Ou même

 SELECT *
 FROM Animal
 WHERE disponible;

V.7.4.3. Historisation

Voici deux exemples de systèmes d’historisation :

— l’un très basique, gardant simplement trace de l’insertion (date et utilisateur) et de
la dernière modification (date et utilisateur), et se faisant directement dans la table
concernée ;

— l’autre plus complet, qui garde une copie de chaque version antérieure des lignes dans
une table dédiée, ainsi qu’une copie de la dernière version en cas de suppression.

V.7.4.3.1. Historisation basique

On va utiliser cette historisation pour la table Race. Libre à vous d’adapter ou de créer les
triggers d’autres tables pour les historiser également de cette manière.

On ajoute donc quatre colonnes à la table. Ces colonnes seront toujours remplies automatiquement
par les triggers.

441

V. Sécuriser et automatiser ses actions

 -- On modifie la table Race
 ALTER TABLE Race ADD COLUMN date_insertion DATETIME,

-- date d'insertion
 ADD COLUMN utilisateur_insertion VARCHAR(20),

-- utilisateur ayant inséré la ligne
 ADD COLUMN date_modification DATETIME,

-- date de dernière modification
 ADD COLUMN utilisateur_modification VARCHAR(20);

-- utilisateur ayant fait la dernière
modification

 -- On remplit les colonnes
 UPDATE Race
 SET date_insertion = NOW() - INTERVAL 1 DAY,
 utilisateur_insertion = 'Test',
 date_modification = NOW()- INTERVAL 1 DAY,
 utilisateur_modification = 'Test';

J’ai mis artificiellement les dates d’insertion et de dernière modification à la veille d’aujourd’hui, et
les utilisateurs pour l’insertion et la modification à ”Test”, afin d’avoir des données intéressantes
lors des tests. Idéalement, ce type d’historisation doit bien sûr être mis en place dès la création
de la table.

Occupons-nous maintenant des triggers. Il en faut sur l’insertion et sur la modification.

 DELIMITER |
 CREATE TRIGGER before_insert_race BEFORE INSERT
 ON Race FOR EACH ROW
 BEGIN
 SET NEW.date_insertion = NOW();
 SET NEW.utilisateur_insertion = CURRENT_USER();
 SET NEW.date_modification = NOW();
 SET NEW.utilisateur_modification = CURRENT_USER();
 END |

 CREATE TRIGGER before_update_race BEFORE UPDATE
 ON Race FOR EACH ROW
 BEGIN
 SET NEW.date_modification = NOW();
 SET NEW.utilisateur_modification = CURRENT_USER();
 END |
 DELIMITER ;

Les triggers sont très simples : ils mettent simplement à jour les colonnes d’historisation
nécessaires ; ils doivent donc nécessairement être BEFORE.

Test :

442

V. Sécuriser et automatiser ses actions

 INSERT INTO Race (nom, description, espece_id, prix)
 VALUES ('Yorkshire terrier',

'Chien de petite taille au pelage long et soyeux de couleur bleu et feu.',
1, 700.00);

 UPDATE Race
 SET prix = 630.00
 WHERE nom = 'Rottweiller' AND espece_id = 1;

 SELECT nom, DATE(date_insertion) AS date_ins, utilisateur_insertion

AS utilisateur_ins, DATE(date_modification) AS date_mod,
utilisateur_modification AS utilisateur_mod

 FROM Race
 WHERE espece_id = 1;

nom date_ins utilisateur_ins date_mod utilisateur_mod

Berger allemand 2012-05-02 Test 2012-05-02 Test

Berger blanc suisse 2012-05-02 Test 2012-05-02 Test

Rottweiller 2012-05-02 Test 2012-05-03 sdz@localhost

Yorkshire terrier 2012-05-03 sdz@localhost 2012-05-03 sdz@localhost

V.7.4.3.2. Historisation complète

Nous allons mettre en place un système d’historisation complet pour la table Animal. Celle-ci
ne change pas et contiendra la dernière version des données. Par contre, on va ajouter une table
Animal_histo, qui contiendra les versions antérieures (quand il y en a) des données d’Animal.

 CREATE TABLE Animal_histo (
 id SMALLINT(6) UNSIGNED NOT NULL, -- Colonnes

historisées
 sexe CHAR(1),
 date_naissance DATETIME NOT NULL,
 nom VARCHAR(30),
 commentaires TEXT,
 espece_id SMALLINT(6) UNSIGNED NOT NULL,
 race_id SMALLINT(6) UNSIGNED DEFAULT NULL,
 mere_id SMALLINT(6) UNSIGNED DEFAULT NULL,
 pere_id SMALLINT(6) UNSIGNED DEFAULT NULL,
 disponible BOOLEAN DEFAULT TRUE,

 date_histo DATETIME NOT NULL, -- Colonnes

techniques

443

V. Sécuriser et automatiser ses actions

 utilisateur_histo VARCHAR(20) NOT NULL,
 evenement_histo CHAR(6) NOT NULL,
 PRIMARY KEY (id, date_histo)
) ENGINE=InnoDB;

Les colonnes date_histo et utilisateur_histo contiendront bien sûr la date à laquelle la ligne a été
historisée, et l’utilisateur qui a provoqué cette historisation. Quant à la colonne evenement_histo,
elle contiendra l’événement qui a déclenché le trigger (soit ”DELETE”, soit ”UPDATE”). La clé
primaire de cette table est le couple (id, date_histo).

Voici les triggers nécessaires. Cette fois, ils pourraient être soit BEFORE, soit AFTER. Cependant,
aucun traitement ne concerne les nouvelles valeurs de la ligne modifiée (ni, a fortiori, de la ligne
supprimée). Par conséquent, autant utiliser AFTER, cela évitera d’exécuter les instructions du
trigger en cas d’erreur lors de la requête déclenchant celui-ci.

 DELIMITER |
 CREATE TRIGGER after_update_animal AFTER UPDATE
 ON Animal FOR EACH ROW
 BEGIN
 INSERT INTO Animal_histo (
 id,
 sexe,
 date_naissance,
 nom,
 commentaires,
 espece_id,
 race_id,
 mere_id,
 pere_id,
 disponible,

 date_histo,
 utilisateur_histo,
 evenement_histo)
 VALUES (
 OLD.id,
 OLD.sexe,
 OLD.date_naissance,
 OLD.nom,
 OLD.commentaires,
 OLD.espece_id,
 OLD.race_id,
 OLD.mere_id,
 OLD.pere_id,
 OLD.disponible,

 NOW(),
 CURRENT_USER(),

444

V. Sécuriser et automatiser ses actions

 'UPDATE');
 END |

 CREATE TRIGGER after_delete_animal AFTER DELETE
 ON Animal FOR EACH ROW
 BEGIN
 INSERT INTO Animal_histo (
 id,
 sexe,
 date_naissance,
 nom,
 commentaires,
 espece_id,
 race_id,
 mere_id,
 pere_id,
 disponible,

 date_histo,
 utilisateur_histo,
 evenement_histo)
 VALUES (
 OLD.id,
 OLD.sexe,
 OLD.date_naissance,
 OLD.nom,
 OLD.commentaires,
 OLD.espece_id,
 OLD.race_id,
 OLD.mere_id,
 OLD.pere_id,
 OLD.disponible,

 NOW(),
 CURRENT_USER(),
 'DELETE');
 END |
 DELIMITER ;

Cette fois, ce sont les valeurs avant modification/suppression qui nous intéressent, d’où l’utilisa-
tion de OLD.

Test :

 UPDATE Animal
 SET commentaires = 'Petit pour son âge'
 WHERE id = 10;

445

V. Sécuriser et automatiser ses actions

 DELETE FROM Animal
 WHERE id = 47;

 SELECT id, sexe, date_naissance, nom, commentaires, espece_id
 FROM Animal
 WHERE id IN (10, 47);

 SELECT id, nom, date_histo, utilisateur_histo, evenement_histo
 FROM Animal_histo;

id sexe date_nais-
sance

nom commen-
taires espece_id

10 M 2010-07-21
15:41:00 Bobo

Petit pour son
âge 1

id nom date_histo utilisa-
teur_histo

evene-
ment_histo

10 Bobo 2012-05-03
21:51:12 sdz@localhost UPDATE

47 Scroupy 2012-05-03
21:51:12 sdz@localhost DELETE

V.7.4.3.3. Quelques remarques sur l’historisation

Les deux systèmes d’historisation montrés dans ce cours ne sont que deux possibilités parmi
des dizaines. Si vous pensez avoir besoin d’un système de ce type, prenez le temps de réfléchir,
et de vous renseigner sur les diverses possibilités qui s’offrent à vous. Dans certains systèmes,
on combine les deux historisations que j’ai présentées. Parfois, on ne conserve pas les lignes
supprimées dans la table d’historisation, mais on utilise plutôt un système d’archive, séparé de
l’historisation. Au-delà du modèle d’historisation que vous choisirez, les détails sont également
modifiables. Voulez-vous garder toutes les versions des données, ou les garder seulement pour une
certaine période de temps ? Voulez-vous enregistrer l’utilisateur SQL ou plutôt des utilisateurs
créés pour votre application, découplés des utilisateurs SQL? Ne restez pas bloqués sur les
exemples montrés dans ce cours (que ce soit pour l’historisation ou le reste), le monde est
vaste !

V.7.5. Restrictions

Les restrictions sur les triggers sont malheureusement trop importantes pour qu’on puisse se
permettre de ne pas les mentionner. On peut espérer qu’une partie de ces restrictions soit levée
dans une prochaine version de MySQL, mais en attendant, il est nécessaire d’avoir celles-ci en
tête. Voici donc les principales.

446

V. Sécuriser et automatiser ses actions

V.7.5.0.1. Commandes interdites

Il est impossible de travailler avec des transactions à l’intérieur d’un trigger. Cette
restriction est nécessaire, puisque la requête ayant provoqué l’exécution du trigger pourrait
très bien se trouver elle-même à l’intérieur d’une transaction. Auquel cas, toute commande
START TRANSACTION, COMMIT ou ROLLBACK interagirait avec cette transaction, de manière
intempestive.

Les requêtes préparées ne peuvent pas non plus être utilisées.

Enfin, on ne peut pas appeler n’importe quelle procédure à partir d’un trigger.

— Les procédures appelées par un trigger ne peuvent pas envoyer d’informations au
client MySQL. Par exemple, elles ne peuvent pas exécuter un simple SELECT, qui
produit un affichage dans le client (un SELECT...INTO par contre est permis). Elles
peuvent toutefois renvoyer des informations au trigger grâce à des paramètres OUT ou
INOUT.

— Les procédures appelées ne peuvent utiliser ni les transactions (START TRANSACTION, COM
MIT ou ROLLBACK) ni les requêtes préparées. C’est-à-dire qu’elles doivent respecter
les restrictions des triggers.

V.7.5.0.2. Tables utilisées par la requête

Comme mentionné auparavant, il est impossible de modifier les données d’une table
utilisée par la requête ayant déclenché le trigger à l’intérieur de celui-ci.

Cette restriction est importante, et peut remettre en question l’utilisation de certains triggers.

Exemple : le trigger AFTER INSERT ON Adoption modifie les données de la table Animal. Si
l’on exécute la requête suivante, cela posera problème.

 INSERT INTO Adoption (animal_id, client_id, date_reservation, prix,
paye)

 SELECT Animal.id, 4, NOW(), COALESCE(Race.prix, Espece.prix), FALSE
 FROM Animal
 INNER JOIN Espece ON Espece.id = Animal.espece_id
 LEFT JOIN Race ON Race.id = Animal.race_id
 WHERE Animal.nom = 'Boucan' AND Animal.espece_id = 2;

 ERROR 1442 (HY000): Can't update table 'animal' in stored function/trigger because it is already used by statement which invoked this stored function/trigger.

Le trigger échoue puisque la table Animal est utilisée par la requête INSERT qui le déclenche.
L’insertion elle-même est donc finalement annulée.

447

V. Sécuriser et automatiser ses actions

V.7.5.0.3. Clés étrangères

Une suppression ou modification de données déclenchée par une clé étrangère ne
provoquera pas l’exécution du trigger correspondant. Par exemple, la colonne Ani-
mal.race_id possède une clé étrangère, qui référence la colonne Race.id. Cette clé étrangère a
été définie avec l’option ON DELETE SET NULL. Donc en cas de suppression d’une race, tous les
animaux de cette race seront modifiés, et leur race_id changée en NULL. Il s’agit donc d’une
modification de données. Mais comme cette modification a été déclenchée par une contrainte de
clé étrangère, les éventuels triggers BEFORE UPDATE et AFTER UPDATE de la table Animal ne
seront pas déclenchés.

En cas d’utilisation de triggers sur des tables présentant des clés étrangères avec ces options, il
vaut donc mieux supprimer celles-ci et déplacer ce comportement dans des triggers. Une autre
solution est de ne pas utiliser les triggers sur les tables concernées. Vous pouvez alors remplacer
les triggers par l’utilisation de procédures stockées et/ou de transactions.

?
Qu’avons-nous comme clés étrangères dans nos tables ?

— Race : CONSTRAINT fk_race_espece_id FOREIGN KEY (espece_id) REFERENCES
Espece (id) ON DELETE CASCADE;

— Animal : CONSTRAINT fk_race_id FOREIGN KEY (race_id) REFERENCES Race (id)
ON DELETE SET NULL;

— Animal : CONSTRAINT fk_espece_id FOREIGN KEY (espece_id) REFERENCES Es
pece (id);

— Animal : CONSTRAINT fk_mere_id FOREIGN KEY (mere_id) REFERENCES Animal
(id) ON DELETE SET NULL;

— Animal : CONSTRAINT fk_pere_id FOREIGN KEY (pere_id) REFERENCES Animal
(id) ON DELETE SET NULL;

Quatre d’entre elles pourraient donc poser problème. Quatre, sur cinq ! Ce n’est donc pas anodin
comme restriction !

On va donc modifier nos clés étrangères pour qu’elles reprennent leur comportement par défaut.
Il faudra ensuite créer (ou recréer) quelques triggers pour reproduire le comportement que l’on
avait défini. À ceci près que la restriction sur la modification des données d’une table utilisée
par l’événement déclencheur fait qu’on ne pourra pas reproduire certains comportements. On
ne pourra pas mettre à NULL les colonnes pere_id et mere_id de la table Animal en cas de
suppression de l’animal de référence.

Voici les commandes :

 -- On supprime les clés
 ALTER TABLE Race DROP FOREIGN KEY fk_race_espece_id;
 ALTER TABLE Animal DROP FOREIGN KEY fk_race_id,
 DROP FOREIGN KEY fk_mere_id,
 DROP FOREIGN KEY fk_pere_id;

448

V. Sécuriser et automatiser ses actions

 -- On les recrée sans option
 ALTER TABLE Race ADD CONSTRAINT fk_race_espece_id FOREIGN KEY

(espece_id) REFERENCES Espece (id);
 ALTER TABLE Animal ADD CONSTRAINT fk_race_id FOREIGN KEY (race_id)

REFERENCES Race (id),
 ADD CONSTRAINT fk_mere_id FOREIGN KEY (mere_id)

REFERENCES Animal (id),
 ADD CONSTRAINT fk_pere_id FOREIGN KEY (pere_id)

REFERENCES Animal (id);

 -- Trigger sur Race
 DELIMITER |
 CREATE TRIGGER before_delete_race BEFORE DELETE
 ON Race FOR EACH ROW
 BEGIN
 UPDATE Animal
 SET race_id = NULL
 WHERE race_id = OLD.id;
 END|

 -- Trigger sur Espece
 CREATE TRIGGER before_delete_espece BEFORE DELETE
 ON Espece FOR EACH ROW
 BEGIN
 DELETE FROM Race
 WHERE espece_id = OLD.id;
 END |
 DELIMITER ;

V.7.5.1. En résumé
— Un trigger est un objet stocké dans la base de données, à la manière d’une table ou

d’une procédure stockée. La seule différence est qu’un trigger est lié à une table, donc
en cas de suppression d’une table, les triggers liés à celle-ci sont supprimés également

— Un trigger définit une ou plusieurs instructions, dont l’exécution est déclenchée
par une insertion, une modification ou une suppression de données dans la table
à laquelle le trigger est lié.

— Les instructions du trigger peuvent être exécutées avant la requête ayant déclenché
celui-ci, ou après. Ce comportement est à définir à la création du trigger.

— Une table ne peut posséder qu’un seul trigger par combinaison événement/moment
(BEFORE UPDATE, AFTER DELETE,…)

— Les triggers sous MySQL sont soumis à d’importantes (et potentiellement très gênantes)
restrictions.

Sécuriser une base de données et automatiser les traitements ne se limite bien sûr pas à ce que

449

V. Sécuriser et automatiser ses actions

nous venons de voir. Les deux prochaines parties vous donneront de nouveaux outils pour avoir
une base de données bien construite, sûre et efficace. Cependant, tout ne pourra pas être abordé
dans ce cours, donc n’hésitez pas à poursuivre votre apprentissage.

450

	V Sécuriser et automatiser ses actions
	V.7 Triggers
	V.7.1 Principe et usage
	V.7.1.1 Qu'est-ce qu'un trigger ?
	V.7.1.2 À quoi sert un trigger ?

	V.7.2 Création des triggers
	V.7.2.1 Syntaxe
	V.7.2.2 Règle et convention
	V.7.2.3 OLD et NEW
	V.7.2.4 Erreur déclenchée pendant un trigger

	V.7.3 Suppression des triggers
	V.7.4 Exemples
	V.7.4.1 Contraintes et vérification des données
	V.7.4.2 Mise à jour d'informations dépendant d'autres données
	V.7.4.3 Historisation

	V.7.5 Restrictions
	V.7.5.1 En résumé

