V.4. Procédures stockées

Les procédures stockées sont disponibles depuis la version 5 de MySQL, et permettent d’auto-
matiser des actions, qui peuvent étre tres complexes.

Une procédure stockée est en fait une série d’instructions SQL désignée par un nom. Lorsque
I'on crée une procédure stockée, on I'enregistre dans la base de données que 1’'on utilise, au
méme titre qu’'une table par exemple. Une fois la procédure créée, il est possible d’appeler
celle-ci, par son nom. Les instructions de la procédure sont alors exécutées.

Contrairement aux requétes préparées, qui ne sont gardées en mémoire que pour la session
courante, les procédures stockées sont, comme leur nom l'indique, stockées de maniére
durable, et font bien partie intégrante de la base de données dans laquelle elles sont
enregistrées.

V.4.1. Création et utilisation d’une procédure

Voyons tout de suite la syntaxe a utiliser pour créer une procédure :

1 CREATE PROCEDURE nom_procedure ([parametrel [, parametre2, ...]])
2 corps de la procédure;

Décodons tout ceci.

— CREATE PROCEDURE : sans surprise, il s’agit de la commande a exécuter pour créer une
procédure. On fait suivre cette commande du nom que 'on veut donner a la nouvelle
procédure.

— ([parametrel [, parametre2, ...]]) : apres le nom de la procédure viennent des
parentheses. Celles-ci sont obligatoires! A l'intérieur de ces parenthéses, on définit
les éventuels parametres de la procédure. Ces parametres sont des variables qui pourront
étre utilisées par la procédure.

— corps de la procédure : c¢’est la que 'on met le contenu de la procédure, ce qui va étre
exécuté lorsqu’on lance la procédure. Cela peut étre soit une seule requéte, soit un
bloc d’instructions.

Les noms des procédures stockées ne sont pas sensibles a la casse.

370

V. Sécuriser et automatiser ses actions

V.4.1.1. Procédure avec une seule requéte

Voici une procédure toute simple, sans parametres, qui va juste afficher toutes les races d’ani-
matux.

1 | CREATE PROCEDURE afficher_races_requete() -- pas de parametres dans
les parentheses
2 | SELECT id, nom, espece_1id, prix FROM Race;

V.4.1.2. Procédure avec un bloc d’instructions

Pour délimiter un bloc d’instructions (qui peut donc contenir plus d’une instruction), on utilise
les mots BEGIN et END.

1 BEGIN
2 -— Série d'instructions
3 END;

Exemple : reprenons la procédure précédente, mais en utilisant un bloc d’instructions.

1 | CREATE PROCEDURE afficher_races_bloc() -- pas de parametres dans
les parenthéses
2 BEGIN
3 SELECT id, nom, espece_id, prix FROM Race;
4 END;
Malheureusement...

1 | ERROR 1064 (42000): You have an error in your SQL syntax; check the manual tha

Que s’est-il passé? La syntaxe semble correcte...

Les mots-clés sont bons, il n’y a pas de parametres mais on a bien mis les parentheses, BEGIN
et END sont tous les deux présents. Tout cela est correct, et pourtant, nous avons visiblement
omis un détail.

Peut-étre aurez-vous compris que le probléme se situe au niveau du caractére [; | : en effet,
un [_; | termine une instruction SQL. Or, on a mis un [; | & la suite de SELECT * FROM Race}.
Cela semble logique, mais pose probléme puisque ¢’est le premier [; | rencontré par l'instruction
CREATE PROCEDURE, qui naturellement pense devoir s’arréter la. Ceci déclenche une erreur

371

V. Sécuriser et automatiser ses actions

puisqu’en réalité, I'instruction CREATE PROCEDURE n’est pas terminée : le bloc d’instructions
n’est pas complet !

Comment faire pour écrire des instructions a l'intérieur d’'une instruction alors ?

Il suffit de changer le délimiteur !

V.4.1.3. Délimiteur

Ce qu’on appelle délimiteur, ¢’est tout simplement (par défaut), le caractere @ C’est-a-dire le
caractere qui permet de délimiter les instructions. Or, il est tout a fait possible de définir le
délimiteur manuellement, de maniére & ce que [;] ne signifie plus qu’une instruction se termine.
Auquel cas le caractere [; | pourra étre utilisé & I'intérieur d’'une instruction, et donc pourra
étre utilisé dans le corps d’une procédure stockée.

Pour changer le délimiteur, il suffit d’utiliser cette commande :

DELIMITER |

A partir de maintenant, vous devrez utiliser le caracteére ||| pour signaler la fin d’une instruction. ||;] ne
sera plus compris comme tel par votre session.

SELECT 'test'|

test

test

DELIMITER n’agit que pour la session courante.

Vous pouvez utiliser le (ou les) caracteére(s) de votre choix comme délimiteur. Bien entendu, il
vaut mieux choisir quelque chose qui ne risque pas d’étre utilisé dans une instruction. Bannissez
donc les lettres, chiffres, (qui servent pour les variables utilisateurs) et les (qui servent
a échapper les caracteres spéciaux).

Les deux délimiteurs suivants sont les plus couramment utilisés :

DELIMITER //
DELIMITER |

372

V. Sécuriser et automatiser ses actions

Bien! Ceci étant réglé, reprenons!

V.

4.1.4. Création d’une procédure stockée

1 DELIMITER | -= 0On change le délimiteur

2 | CREATE PROCEDURE aff-icher_races() -- toujours pas de
paramétres, toujours des parentheses

3 BEGIN

4 SELECT 1id, nom, espece_id, prix

5 FROM Race; -— Cette fois, le ; ne nous

embétera pas
6 END| -- Et on termine bien sir la

commande CREATE PROCEDURE par notre nouveau délimiteur

Cette fois-ci, tout se passe bien. La procédure a été créée.

Les procédures stockées n’étant que tres rarement composées d'une seule instruction, on utilise

Lorsqu’on utilisera la procédure, quel que soit le délimiteur défini par DELIMITER, les
instructions a l'intérieur du corps de la procédure seront bien délimitées par E] En effet,
lors de la création d’une procédure, celle-ci est interprétée — on dit aussi "parsée” — par le
serveur MySQL et le parseur des procédures stockées interprétera toujours [I] comme
délimiteur. Il n’est pas influencé par la commande DELIMITER.

presque toujours un bloc d’instructions pour le corps de la procédure.

V.4.1.5. Utilisation d’une procédure stockée

Pour appeler une procédure stockée, c’est-a-dire déclencher ’exécution du bloc d’instructions
constituant le corps de la procédure, il faut utiliser le mot-clé CALL, suivi du nom de la procédure

appelée, puis de parentheses (avec éventuellement des parametres).

1 | CALL afficher_races() | -- le délimiteur est toujours | !!!
id nom espece__id prix
1 Berger allemand 1 485.00
2 Berger blanc suisse 1 935.00
3 Singapura 2 985.00
4 Bleu russe 2 835.00

373

V. Sécuriser et automatiser ses actions

) Maine coon 2 735.00
7 Sphynx 2 1235.00
8 Nebelung 2 985.00
9 Rottweiller 1 600.00

Le bloc d’instructions a bien été exécuté (un simple SELECT dans ce cas).

V.4.2. Les paramétres d’une procédure stockée

Maintenant que 1’on sait créer une procédure et I’appeler, intéressons-nous aux parametres.

V.4.2.1. Sens des parameétres

Un parametre peut étre de trois sens différents : entrant (IN), sortant (OUT), ou les deux
(INOUT).

— 1IN : c’est un parametre "entrant”. C’est-a-dire qu’il s’agit d’un parametre dont la valeur
est fournie a la procédure stockée. Cette valeur sera utilisée pendant la procédure (pour
un calcul ou une sélection par exemple).

— OUT : il s’agit d’un parametre "sortant”, dont la valeur va étre établie au cours de la
procédure et qui pourra ensuite étre utilisé en dehors de cette procédure.

— INOUT : un tel parametre sera utilisé pendant la procédure, verra éventuellement sa
valeur modifiée par celle-ci, et sera ensuite utilisable en dehors.

V.4.2.2. Syntaxe

Lorsque I'on crée une procédure avec un ou plusieurs parametres, chaque parametre est défini
par trois éléments.

— Son sens : entrant, sortant, ou les deux. Si aucun sens n’est donné, il s’agira d’un
parametre IN par défaut.

— Son nom : indispensable pour le désigner a l'intérieur de la procédure.

— Son type : INT, VARCHAR(10),..

V.4.2.3. Exemples
V.4.2.3.1. Procédure avec un seul paramétre entrant

Voici une procédure qui, selon ’id de I’espece qu’on lui passe en parametre, affiche les différentes
races existant pour cette espéce.

374

V. Sécuriser et automatiser ses actions

1 DELIMITER |

Facultatif si votre délimiteur est toujours |
2 | CREATE PROCEDURE afficher_race_selon_espece (IN p_espece_id INT)

-- Définition du parametre p_espece_id

BEGIN
SELECT id, nom, espece_id, prix
FROM Race
WHERE espece_id = p_espece_id;
Utilisation du parametre

(o) I) RN N OV]

~

END |
8 DELIMITER ;
On remet le délimiteur par défaut

Notez que, suite a la création de la procédure, j'ai remis le délimiteur par défaut @
Ce n’est absolument pas obligatoire, vous pouvez continuer a travailler avec ||||| si vous

préférez.

Pour 'utiliser, il faut donc passer une valeur en parametre de la procédure. Soit directement,

soit par l'intermédiaire d’une variable utilisateur.

1 CALL afficher_race_selon_espece(1l);
2 | SET @espece_id := 2;

3 | CALL afficher_race_selon_espece(@espece_id);

id nom espece__id prix
1 Berger allemand 1 485.00
2 Berger blanc suisse 1 935.00
9 Rottweiller 1 600.00
id nom espece__id prix
3 Singapura 2 985.00
4 Bleu russe 2 835.00
) Maine coon 2 735.00
7 Sphynx 2 1235.00
8 Nebelung 2 985.00

Le premier appel a la procédure affiche bien toutes les races de chiens, et le second, toutes les

375

V. Sécuriser et automatiser ses actions

races de chats.

J’ai fait commencer le nom du parametre par "p” Ce n’est pas obligatoire, mais je vous
conseille de le faire systématiquement pour vos parametres afin de les distinguer facilement.
St vous ne le faites pas, soyez extrémement prudents avec les noms que vous leur donnez.
Par exemple, dans cette procédure, si on avait nommé le paramétre __espece id, cela aurait
posé probléme, puisque espece id est aussi le nom d’une colonne dans la table Race.
Qui plus est, c’est le nom de la colonne dont on se sert dans la condition WHERE. En cas
d’ambiguité, MySQL interprete I'élément comme étant le parametre, et non la colonne.
On aurait donc eu WHERE 1 = 1 par exemple, ce qui est toujours vrai.

V.4.2.3.2. Procédure avec deux paramétres, un entrant et un sortant

Voici une procédure assez similaire a la précédente, si ce n’est qu’elle n’affiche pas les races
existant pour une espece, mais compte combien il y en a, puis stocke cette valeur dans un
parametre sortant.

1 DELIMITER |
2 | CREATE PROCEDURE compter_races_selon_espece (p_espece_id INT, OUT
p_nb_races INT)

3 BEGIN

4 SELECT COUNT(x) INTO p_nb_races
5 FROM Race

6 WHERE espece_id = p_espece_id;
7 END |

8 DELIMITER ;

Aucun sens n’a été précisé pour p espece id, il est donc considéré comme un parametre
entrant.

SELECT COUNT (*) INTO p_nb_races. Voila qui est nouveau! Comme vous ’avez sans doute
deviné, le mot-clé INTO placé apres la clause SELECT permet d’assigner les valeurs sélec-
tionnées par ce SELECT a des variables, au lieu de simplement afficher les valeurs sélectionnées.
Dans le cas présent, la valeur du COUNT (x) est assignée a p_nb_races.

Pour pouvoir I'utiliser, il est nécessaire que le SELECT ne renvoie qu'une seule ligne, et il faut
que le nombre de valeurs sélectionnées et le nombre de variables a assigner soient égaux :

Exemple 1 : SELECT ... INTO correct avec deux valeurs
1 SELECT id, nom INTO @varl, @var2
2 'FROM Animal
3 WHERE id = 7;
4 | SELECT @varl, @var2;

376

V. Sécuriser et automatiser ses actions

@varl Q@var2

7 Caroline

Le SELECT ... INTO n’arien affiché, mais a assigné la valeur 7 a @varl, et la valeur 'Caroline'
a @uar2, que nous avons ensuite affichées avec un autre SELECT.

Exemple 2 : SELECT ... INTO incorrect, car le nombre de valeurs sélectionnées (deux) n’est
pas le méme que le nombre de variables & assigner (une).

SELECT id, nom INTO @varl
FROM Animal
WHERE id = 7;

ERROR 1222 (21000): The used SELECT statements have a different number of colu

Exemple 3 : SELECT ... INTO incorrect, car il y a plusieurs lignes de résultats.

SELECT id, nom INTO @varl, @var2
FROM Animal
WHERE espece_id = 5;

ERROR 1172 (42000): Result consisted of more than one row

Revenons maintenant a notre nouvelle procédure compter _races_selon__espece() et exécutons-la.
Pour cela, il va falloir lui passer deux parametres : p_espece id et p_nb_races. Le premier
ne pose pas de probleme, il faut simplement donner un nombre, soit directement soit par
I'intermédiaire d’une variable, comme pour la procédure afficher race selon__espece(). Par
contre, pour le second, il s’agit d’'un parametre sortant. Il ne faut donc pas donner une valeur,
mais quelque chose dont la valeur sera déterminée par la procédure (grace au SELECT ... INTO),
et qu’on pourra utiliser ensuite : une variable utilisateur !

CALL compter_races_selon_espece (2, @nb_races_chats);

Et voila! La variable @nb_races chats contient maintenant le nombre de races de chats. Il suffit
de I'afficher pour vérifier.

377

V. Sécuriser et automatiser ses actions

SELECT @nb_races_chats;

@nb_races_ _chats

V.4.2.3.3. Procédure avec deux paramétres, un entrant et un entrant-sortant

Nous allons créer une procédure qui va servir a calculer le prix que doit payer un client. Pour
cela, deux parametres sont nécessaires : 'animal acheté (parameétre IN), et le prix a payer
(parametre INOUT). La raison pour laquelle le prix est un parametre a la fois entrant et sortant
est qu’on veut pouvoir, avec cette procédure, calculer simplement un prix total dans le cas ou
un client acheterait plusieurs animaux. Le principe est simple : si le client n’a encore acheté
aucun animal, le prix est de 0. Pour chaque animal acheté, on appelle la procédure, qui ajoute
au prix total le prix de I'animal en question. Une fois n’est pas coutume, commencgons par voir
les requétes qui nous serviront a tester la procédure. Cela devrait clarifier le principe. Je vous
propose d’essayer ensuite d’écrire vous-mémes la procédure correspondante avant de regarder a
quoi elle ressemble.

SET @prix = 0; -- On 1initialise @prix a o

CALL calculer_prix (13, @prix); -- Achat de Rouquine
SELECT @prix AS prix_intermediaire;

CALL calculer_prix (24, @prix); -- Achat de Cartouche
SELECT @prix AS prix_intermediaire;

CALL calculer_prix (42, @prix); -- Achat de Bilba
SELECT @prix AS prix_intermediaire;

CALL calculer_prix (75, @prix); -- Achat de Mimi
SELECT @prix AS total;

On passe donc chaque animal acheté tour a tour a la procédure, qui modifie le prix en conséquence.
Voici quelques indices et rappels qui devraient vous aider a écrire vous-mémes la procédure.

— Le prix n’est pas un nombre entier.
— Il est possible de faire des additions directement dans un SELECT.
— Pour déterminer le prix, il faut utiliser la fonction COALESCE ().

Réponse :

Contenu masqué n°49

378

V. Sécuriser et automatiser ses actions

Et voici ce qu’affichera le code de test :

prix__intermediaire
485.00
prix__intermediaire
685.00
prix__intermediaire
1420.00
total
1430.00

Voila qui devrait nous simplifier la vie. Et nous n’en sommes qu’au début des possibilités des
procédures stockées !

V.4.3. Suppression d’une procédure

Vous commencez a connaitre cette commande : pour supprimer une procédure, on utilise DROP
(en précisant qu'il s’agit d’'une procédure).

Exemple :

1 DROP PROCEDURE afficher_races;

Pour rappel, les procédures stockées ne sont pas détruites a la fermeture de la session mais
bien enregistrées comme un élément de la base de données, au méme titre qu’'une table par
exemple.

Notons encore qu’il n’est pas possible de modifier une procédure directement. La seule facon de
modifier une procédure existante est de la supprimer puis de la recréer avec les modifications.

Il existe bien une commande ALTER PROCEDURE, mais elle ne permet de changer ni les
parametres, ni le corps de la procédure. Elle permet uniquement de changer certaines
caractéristiques de la procédure, et ne sera pas couverte dans ce cours.

379

V. Sécuriser et automatiser ses actions

V.4.4. Avantages, inconvénients et usage des procédures
stockées

V.4.4.1. Avantages

Les procédures stockées permettent de réduire les allers-retours entre le client et le
serveur MySQL. En effet, si I’'on englobe en une seule procédure un processus demandant
'exécution de plusieurs requétes, le client ne communique qu’une seule fois avec le serveur (pour
demander 'exécution de la procédure) pour exécuter la totalité du traitement. Cela permet
donc un certain gain en performance.

Elles permettent également de sécuriser une base de données. Par exemple, il est possible de
restreindre les droits des utilisateurs de facon a ce qu’ils puissent uniquement exécuter
des procédures. Finis les DELETE dangereux ou les UPDATE inconsidérés. Chaque requéte
exécutée par les utilisateurs est créée et controlée par I’administrateur de la base de données
par I'intermédiaire des procédures stockées.

Cela permet ensuite de s’assurer qu’un traitement est toujours exécuté de la méme
maniére, quelle que soit l'application/le client qui le lance. Il arrive par exemple qu'une
méme base de données soit exploitée par plusieurs applications, lesquelles peuvent étre écrites
avec différents langages. Si on laisse chaque application avoir son propre code pour un méme
traitement, il est possible que des différences apparaissent (distraction, mauvaise communication,
erreur ou autre). Par contre, si chaque application appelle la méme procédure stockée, ce risque
disparait.

V.4.4.2. Inconvénients

Les procédures stockées ajoutent évidemment a la charge sur le serveur de données.
Plus on implémente de logique de traitement directement dans la base de données, moins le
serveur est disponible pour son but premier : le stockage de données.

Par ailleurs, certains traitements seront toujours plus simples et plus courts a écrire (et donc a
maintenir) s’ils sont développés dans un langage informatique adapté. A fortiori lorsqu’il s’agit
de traitements complexes. La logique qu’il est possible d’implémenter avec MySQL
permet de nombreuses choses, mais reste assez basique.

Enfin, la syntaxe des procédures stockées differe beaucoup d’un SGBD a un autre.
Par conséquent, si I'on désire en changer, il faudra procéder a un grand nombre de corrections
et d’ajustements.

V.4.4.3. Conclusion et usage

Comme souvent, tout est question d’équilibre. Il faut savoir utiliser des procédures quand c’est
utile, quand on a une bonne raison de le faire. Il ne sert a rien d’en abuser. Pour une base
contenant des données ultrasensibles, une bonne gestion des droits des utilisateurs couplée a
I'usage de procédures stockées peut se révéler salutaire. Pour une base de données destinée
a étre utilisée par plusieurs applications différentes, on choisira de créer des procédures pour

380

V. Sécuriser et automatiser ses actions

les traitements généraux et/ou pour lesquels la moindre erreur peut poser de gros problemes.
Pour un traitement long, impliquant de nombreuses requétes et une logique simple, on peut
sérieusement gagner en performance en le faisant dans une procédure stockée (a fortiori si ce
traitement est souvent lancé).

A vous de voir quelles procédures sont utiles pour votre application et vos besoins.

V.4.4.4. En résumeé

— Une procédure stockée est un ensemble d’instructions que 'on peut exécuter sur
commande.

— Une procédure stockée est un objet de la base de données stocké de maniéere durable,
au méme titre qu’'une table. Elle n’est pas supprimée a la fin de la session comme |’est
une requéte préparée.

— On peut passer des parametres a une procédure stockée, qui peuvent avoir trois sens :
IN (entrant), OUT (sortant) ou INOUT (les deux).

— SELECT ... INTO permet d’assigner des données sélectionnées a des variables ou des
parametres, a condition que le SELECT ne renvoie qu’une seule ligne, et qu’il y ait autant
de valeurs sélectionnées que de variables a assigner.

— Les procédures stockées peuvent permettre de gagner en performance en diminuant les
allers-retours entre le client et le serveur. Elles peuvent également aider a sécuriser une
base de données et a s’assurer que les traitements sensibles soient toujours exécutés
de la méme maniere.

— Par contre, elle ajoute a la charge du serveur et sa syntaxe n’est pas toujours
portable d’'un SGBD a un autre.

Contenu masqué

Contenu masqué n°49

DELIMITER |

CREATE PROCEDURE calculer_prix (IN p_animal_id INT, INOUT p_prix
DECIMAL(7,2))

BEGIN
SELECT p_prix + COALESCE(Race.prix, Espece.prix) INTO p_prix
FROM Animal
INNER JOIN Espece ON Espece.id = Animal.espece_id
LEFT JOIN Race ON Race.id = Animal.race_id
WHERE Animal.id = p_animal_id;

END |

DELIMITER ;

381

V. Sécuriser et automatiser ses actions

382

V.5. Structurer ses instructions

Lorsque 'on écrit une série d’instructions, par exemple dans le corps d’une procédure stockée, il
est nécessaire d’étre capable de structurer ses instructions. Cela va permettre d’instiller de la
logique dans le traitement : exécuter telles ou telles instructions en fonction des données
que l'on possede, répéter une instruction un certain nombre de fois, etc.

Voici quelques outils indispensables a la structuration des instructions :

— les variables locales : qui vont permettre de stocker et modifier des valeurs pendant
le déroulement d’une procédure ;

— les conditions : qui vont permettre d’exécuter certaines instructions seulement si une
certaine condition est remplie;

— les boucles : qui vont permettre de répéter une instruction plusieurs fois.

Ces structures sont bien sir utilisables dans les procédures stockées, que nous avons vues au
chapitre précédent, mais pas uniquement. Elles sont utilisables dans tout objet définissant
une série d’instructions a exécuter. C’est le cas des fonctions stockées (non couvertes
par ce cours et qui forment avec les procédures stockées ce qu’on appelle les "routines”), des
événements (non couverts), et également des triggers, auxquels un chapitre est consacré a la
fin de cette partie.

V.5.1. Blocs d’instructions et variables locales

V.5.1.1. Blocs d’instructions

Nous avons vu qu’un bloc d’instructions était défini par les mots-clés BEGIN et END, entre
lesquels on met les instructions qui composent le bloc (de zéro a autant d’instructions que 'on
veut, séparées bien stir d'un [; J).

Il est possible d’imbriquer plusieurs blocs d’instructions. De méme, a l'intérieur d’un bloc
d’instructions, plusieurs blocs d’instructions peuvent se suivre. Ceux-ci permettent donc de
structurer les instructions en plusieurs parties distinctes et sur plusieurs niveaux d’imbrica-
tion différents.

1 | BEGIN

2 SELECT 'Bloc d''instructions principal';
3

4 BEGIN

5 SELECT

'Bloc d''instructions 2, 1imbriqué dans le bloc principal';

383

V. Sécuriser et automatiser ses actions

~

BEGIN
8 SELECT

'Bloc d''instructions 3, imbriqué dans le bloc d''instructions

9 END;
10 END;
11
12 BEGIN
13 SELECT
'Bloc d''instructions 4, imbriqué dans le bloc principal';
14 END;
15
16 END;

Cet exemple montre également I'importance de 'indentation pour avoir un code lisible.
Ici, toutes les instructions d’un bloc sont au méme niveau et décalées vers la droite par
rapport a la déclaration du bloc. Cela permet de voir en un coup d’ceil ot commence et
ou se termine chaque bloc d’instructions.

V.5.1.2. Variables locales
Nous connaissons déja les variables utilisateur, qui sont des variables désignées par [@). J'ai
également mentionné l'existence des variables systéme, qui sont des variables prédéfinies par

MySQL. Voyons maintenant les variables locales, qui peuvent étre définies dans un bloc
d’instructions.

V.5.1.2.1. Déclaration d’une variable locale

La déclaration d’une variable locale se fait avec 'instruction DECLARE :

1 DECLARE nom_variable type_variable [DEFAULT valeur_defaut];

Cette instruction doit se trouver au tout début du bloc d’instructions dans lequel la variable
locale sera utilisée (donc directement apres le BEGIN).

On a donc une structure générale des blocs d’instructions qui se dégage :

1 | BEGIN

2 -- Déclarations (de variables locales par exemple)

3

4 -- Instructions (dont éventuels blocs d'instructions imbriqués)

384

V. Sécuriser et automatiser ses actions

5 END;

Tout comme pour les variables utilisateur, le nom des variables locales n’est pas sensible

a la casse.

Si aucune valeur par défaut n’est précisée, la variable vaudra NULL tant que sa valeur n’est
pas changée. Pour changer la valeur d’une variable locale, on peut utiliser SET ou SELECT ...

INTO.

Exemple : voici une procédure stockée qui donne la date d’aujourd’hui et de demain :

1 DELIMITER |
2 | CREATE PROCEDURE aujourdhui_demain ()
3 BEGIN
4 DECLARE v_date DATE DEFAULT CURRENT_DATE(); -- On
déclare une variable locale et on lui met une valeur par
défaut
5
6 SELECT DATE_FORMAT (v_date, '%W %e %M %Y') AS Aujourdhui;
-
8 SET v_date = v_date + INTERVAL 1 DAY; -- On
change la valeur de la variable locale
9 SELECT DATE_FORMAT (v_date, '%W %e %M %Y') AS Demain;
10 END|
11 DELIMITER ;
Testons-la :
1 SET lc_time_names = 'fr_FR';
2 | CALL aujourdhui_demain();
Aujourdhui
mardi 1 mai 2012
Demain

mercredi 2 mai 2012

Tout comme pour les parametres, les variables locales peuvent poser probleme si ’on ne
fait pas attention au nom qu’on leur donne. En cas de conflit (avec un nom de colonne par

385

V. Sécuriser et automatiser ses actions

exemple), comme pour les parametres, le nom sera interprété comme désignant la variable

2

locale en priorité. Par conséquent, toutes mes variables locales seront préfixées par "v_ "

V.5.1.2.2. Portée des variables locales dans un bloc d’instruction

Les variables locales n’existent que dans le bloc d’instructions dans lequel elles ont été déclarées.
Deés que le mot-clé END est atteint, toutes les variables locales du bloc sont détruites.

Exemple 1 :

DELIMITER |
CREATE PROCEDURE test_porteel()
BEGIN

DECLARE v_testl INT DEFAULT 1;

BEGIN
DECLARE v_test2 INT DEFAULT 2;

O oo~Nou b WNH

SELECT 'Imbriqué' AS Bloc;
10 SELECT v_testl, v_test2;
11 END;

12 SELECT 'Principal' AS Bloc;

13 SELECT v_testl, v_test2;

14

15 END]|

16 DELIMITER ;

17

18 CALL test_porteel();

Bloc
Imbriqué
v__testl v__test2
1 2
Bloc
Principal

1 |ERROR 1054 (42S22): Unknown column 'v_test2' 1in 'field list'

386

V. Sécuriser et automatiser ses actions

La variable locale v_test2 existe bien dans le bloc imbriqué, puisque c’est la qu’elle est définie,
mais pas dans le bloc principal. v_test! par contre existe dans le bloc principal (ou elle est
définie), mais aussi dans le bloc imbriqué.

Exemple 2 :

DELIMITER |
CREATE PROCEDURE test_portee2()
BEGIN

DECLARE v_testl INT DEFAULT 1;

BEGIN
DECLARE v_test2 INT DEFAULT 2;

SELECT 'Imbriqué 1' AS Bloc;
SELECT v_testl, v_test2;
END;

BEGIN
SELECT 'dimbriqué 2' AS Bloc;
SELECT v_testl, v_test2;
END;

END |
DELIMITER ;

CALL test_portee2();

Bloc
Imbriqué 1
v__testl v__test2
1 2
Bloc
imbriqué 2

ERROR 1054 (42S22): Unknown column 'v_test2' 1in 'field list'

A nouveau, v_testl, déclarée dans le bloc principal, existe dans les deux blocs imbriqués. Par

387

V. Sécuriser et automatiser ses actions

contre, v_test2 n’existe que dans le bloc imbriqué dans lequel elle est déclarée.

Attention cependant a la subtilité suivante : si un bloc imbriqué déclare une variable locale
ayant le méme nom qu’une variable locale déclarée dans un bloc d’un niveau supérieur, il
s’agira toujours de deux variables locales différentes, et seule la variable locale déclarée
dans le bloc imbriqué sera visible dans ce méme bloc.

Exemple 3 :

1 DELIMITER |

2 | CREATE PROCEDURE test_portee3()

3 BEGIN

4 DECLARE v_test INT DEFAULT 1;

5

6 SELECT v_test AS 'Bloc principal';

4

8 BEGIN

9 DECLARE v_test INT DEFAULT 0;

10

11 SELECT v_test AS 'Bloc imbriqué';
12 SET v_test = 2;

13 SELECT v_test AS 'Bloc imbriqué apreés modification';
14 END;

15

16 SELECT v_test AS 'Bloc principal';

17 END |

18 DELIMITER ;

19

20 | CALL test_portee3();

Bloc principal

1
Bloc imbriqué

0
Bloc imbriqué apreés modification

2

Bloc principal

388

V. Sécuriser et automatiser ses actions

La variable locale v _test est déclarée dans le bloc principal et dans le bloc imbriqué, avec
deux valeurs différentes. Mais lorsqu’on revient dans le bloc principal apres exécution du bloc
d’instructions imbriqué, v_test a toujours la valeur qu’elle avait avant I’exécution de ce bloc et
sa deuxieme déclaration. Il s’agit donc bien de deux variables locales distinctes.

V.5.2. Structures conditionnelles

Les structures conditionnelles permettent de déclencher une action ou une série d’instructions
lorsqu’une condition préalable est remplie.

MySQL propose deux structures conditionnelles : IF et CASE.

V.5.2.1. LastructurelF

Voici la syntaxe de la structure IF :

IF condition THEN -instructions

[ELSEIF autre_condition THEN 1instructions
[ELSEIF ...]]

[ELSE 1instructions]

END IF;

a b wWNKH

V.5.2.1.1. Le cas le plus simple : si la condition est vraie, alors on exécute ces instructions
Voici la structure minimale d’un IF :
1 IF condition THEN

2 instructions
3 END IF;

Soit on exécute les instructions (si la condition est vraie), soit on ne les exécute pas.

Exemple : la procédure suivante affiche 'J' 'ai déja été adopté !', si c’est le cas, a partir
de I'id d’un animal :

1 DELIMITER |
2 | CREATE PROCEDURE est_adopte(IN p_animal_id INT)

389

V. Sécuriser et automatiser ses actions

3 BEGIN

4 DECLARE v_nb INT DEFAULT 0; -— 0On crée une variable
locale

5

6 SELECT COUNT(*) INTO v_nb -— On met le nombre de
lignes correspondant a 1'animal

7 FROM Adoption -— dans Adoption dans
notre variable locale

8 WHERE animal_id = p_animal_id;

9

10 IF v_nb > 0 THEN -- On teste si v_nb est
supérieur a 0 (donc si 1'animal a été adopté)

11 SELECT 'J''ai déja été adopté !';

12 END IF; -- Et on n'oublie surtout
pas le END IF et le ; final

13 END |

14 | DELIMITER ;

15

16 CALL est_adopte(3);
17 CALL est_adopte(28);

Seul le premier appel a la procédure va afficher 'J' 'ai déja été adopté !', puisque 'animal
3 est présent dans la table Adoption, contrairement a ’animal 28.

V.5.2.1.2. Deuxiéme cas : si ... alors, sinon ...

Grace au mot-clé ELSE, on peut définir une série d’instructions a exécuter si la condition est
fausse.

ELSE ne doit pas étre suivi de THEN.

Exemple : la procédure suivante affiche 'Je suis né avant 2010' ou 'Je suis né apres
2010"', selon la date de naissance de ’animal transmis en parametre.

DELIMITER |
CREATE PROCEDURE avant_apres_2010(IN p_animal_id INT)
BEGIN

DECLARE v_annee INT;

SELECT YEAR(date_naissance) INTO v_annee
FROM Animal
WHERE id = p_animal_id;

=

IF v_annee < 2010 THEN
SELECT 'Je suis né avant 2010' AS naissance;

H ®© W0 ~NOoO ulbh WN -

=

390

V. Sécuriser et automatiser ses actions

ELSE
THEN

SELECT 'Je suis né apres 2010' AS naissance;
END IF;

obligatoire

END |
DELIMITER ;

CALL avant_apres_2010(34); -— Né le 20/04/2008
CALL avant_apres_2010(69); -- Né le 13/02/2012
V.5.2.1.3. Troisiéme et dernier cas : plusieurs conditions alternatives

Enfin, le mot-clé ELSEIF... THEN permet de vérifier d’autres conditions (en dehors de la
condition du IF), chacune ayant une série d’instructions définies a exécuter en cas de véracité.
Si plusieurs conditions sont vraies en méme temps, seule la premiére rencontrée verra ses
instructions exécutées. On peut bien sir toujours (mais ce n’est pas obligatoire) ajouter un

ELSE pour le cas ou aucune condition ne serait vérifiée.

Exemple : cette procédure affiche un message différent selon le sexe de I'animal passé en

parametre.

DELIMITER |

CREATE PROCEDURE message_sexe(IN p_animal_id INT)
BEGIN

DECLARE v_sexe VARCHAR(10);

SELECT sexe INTO v_sexe
FROM Animal
WHERE id = p_animal_id;

-- Pas de

-- Toujours

IF (v_sexe = 'F') THEN -- Premiere

possibilité
SELECT 'Je suis une femelle !' AS sexe;

ELSEIF (v_sexe = 'M') THEN —-— Deuxieme
possibilité
SELECT 'Je suis un male !' AS sexe;
ELSE -- Défaut
SELECT 'Je suis en plein questionnement existentiel...' AS
sexe;
END IF;

END |
DELIMITER ;

CALL message_sexe(8); -- Male
CALL message_sexe(6); -— Femelle

391

V. Sécuriser et automatiser ses actions

CALL message_sexe(9); -— Ni 1'un ni 1'autre

Il peut bien str y avoir autant de ELSEIF... THEN que l'on veut (mais un seul ELSE).

V.5.2.2. La structure CASE

Deux syntaxes sont possibles pour utiliser CASE.

V.5.2.2.1. Premiére syntaxe : conditions d’égalité

CASE valeur_a_comparer
WHEN possibilitel THEN instructions
[WHEN possibilite2 THEN +instructions]
[ELSE 1instructions]

END CASE;

Exemple : on reprend la procédure message sexe(), et on 'adapte pour utiliser CASE.

DELIMITER |
CREATE PROCEDURE message_sexe2(IN p_animal_id INT)
BEGIN

DECLARE v_sexe VARCHAR(10);

SELECT sexe INTO v_sexe
FROM Animal
WHERE id = p_animal_id;

CASE v_sexe
WHEN 'F' THEN -- Premiere
possibilité
SELECT 'Je suis une femelle !' AS sexe;

WHEN 'M' THEN -- Deuxieme
possibilité
SELECT 'Je suis un male !' AS sexe;
ELSE -- Défaut
SELECT 'Je suis en plein questionnement existentiel...
AS sexe;
END CASE;
END |
DELIMITER ;
CALL message_sexe2(8); -—- Male
CALL message_sexe2(6); -— Femelle

392

V. Sécuriser et automatiser ses actions

CALL message_sexe2(9); -— Ni 1'un ni 1l'autre

On définit donc v_seze comme point de comparaison. Chaque WHEN donne alors un élément
auquel v_sexe doit étre comparé. Les instructions exécutées seront celles du WHEN dont I’élément
est égal a v_sexe. Le ELSE sera exécuté si aucun WHEN ne correspond.

Ici, on compare une variable locale (v_seze) a des chaines de caractéres ('F' et 'M'), mais on
peut utiliser différents types d’éléments. Voici les principaux :

— des variables locales ;

— des variables utilisateur;

— des valeurs constantes de tous types (0, 'chaine', 5.67, '2012-03-23",..);
— des expressions (2 + 4, NOW(), CONCAT (nom, ' ', prenom),...);

Cette syntaxe ne permet pas de faire des comparaisons avec NULL, puisqu’elle utilise une
comparaison de type valeurl = valeur2. Or cette comparaison est inutilisable dans le
cas de NULL. Il faudra donc utiliser la seconde syntaxe, avec le test IS NULL.

V.5.2.2.2. Seconde syntaxe : toutes conditions

Cette seconde syntaxe ne compare pas un ¢élément a différentes valeurs, mais utilise simplement
des conditions classiques et permet donc de faire des comparaisons de type "plus grand que”,
"différent de”; etc. (bien entendu, elle peut également étre utilisée pour des égalités).

CASE
WHEN condition THEN +instructions
[WHEN condition THEN instructions]
[ELSE 1instructions]

END CASE

Exemple : on reprend la procédure avant__apres_2010(), qu’on réécrit avec CASE, et en donnant
une possibilité en plus. De plus, on passe le message en parametre OUT pour changer un peu.

DELIMITER |

CREATE PROCEDURE avant_apres_2010_case (IN p_animal_id INT, OUT
p_message VARCHAR(100))

BEGIN
DECLARE v_annee INT;

SELECT YEAR(date_naissance) INTO v_annee

FROM Animal
WHERE id = p_animal_id;

393

V. Sécuriser et automatiser ses actions

CASE
WHEN v_annee < 2010 THEN
SET p_message = 'Je suis né avant 2010.';
WHEN v_annee = 2010 THEN
SET p_message = 'Je suis né en 2010.';
ELSE
SET p_message = 'Je suis né apres 2010.';
END CASE;

END |
DELIMITER ;

CALL avant_apres_2010_case(59, @message);
SELECT @message;
CALL avant_apres_2010_case(62, @message);
SELECT @message;
CALL avant_apres_2010_case(69, @message);
SELECT @message;

V.5.2.2.3. Comportement particulier : aucune correspondance trouvée

En I'absence de clause ELSE, si aucune des conditions posées par les différentes clauses WHEN
n’est remplie (quelle que soit la syntaxe utilisée), une erreur est déclenchée.

Par exemple, cette procédure affiche une salutation différente selon la terminaison du nom de
I’animal passé en parametre :

DELIMITER |
CREATE PROCEDURE salut_nom(IN p_animal_id INT)
BEGIN

DECLARE v_terminaison CHAR(1);

SELECT SUBSTRING(nom, -1, 1) INTO v_terminaison -- Une
position négative signifie qu'on recule au lieu d'avancer.
FROM Animal -- -1 est

donc la derniére lettre du nom.
WHERE id = p_animal_id;

CASE v_terminaison
WHEN 'a' THEN
SELECT 'Bonjour !' AS Salutations;
WHEN 'o' THEN
SELECT 'Salut !' AS Salutations;
WHEN 'i' THEN
SELECT 'Coucou !' AS Salutations;
END CASE;

394

V. Sécuriser et automatiser ses actions

END |
DELI

CALL
CALL
CALL
CALL

MITER ;

salut_nom(69); -- Baba
salut_nom(5); -— Choupi
salut_nom(29); -- Fiero
salut_nom(54); -- Bubulle

Salutations

Bonjour!

Salutations

Coucou!

Salutations

Salut !

ERROR 1339 (20000): Case not found for CASE statement

L’appel de la procédure avec Bubulle présente un cas qui n’est pas couvert par les trois WHEN.
Une erreur est donc déclenchée

Donc, si I'on n’est pas stir d’avoir couvert tous les cas possibles, il faut toujours ajouter une
clause ELSE pour éviter les erreurs. Si I’on veut qu’aucune instruction ne soit exécutée par le

ELSE, il suffit simplement de mettre un bloc d’instructions vide (BEGIN END};).

Exemple : reprenons la procédure salut_nom(), et ajoutons-lui une clause ELSE vide :

DROP PROCEDURE salut_nom;

DELI

MITER |

CREATE PROCEDURE salut_nom(IN p_animal_id INT)

BEGI

N
DECLARE v_terminaison CHAR(1);

SELECT SUBSTRING(nom, -1, 1) INTO v_terminaison
FROM Animal
WHERE id = p_animal_id;

CASE v_terminaison
WHEN 'a' THEN

395

V. Sécuriser et automatiser ses actions

13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

END |

CALL
CALL
CALL

SELECT 'Bonjour !' AS Salutations;
WHEN 'o' THEN

SELECT 'Salut !' AS Salutations;
WHEN 'i' THEN

SELECT 'Coucou !' AS Salutations;
ELSE

BEGIN ==
d'instructions vide
END;
END CASE;
DELIMITER ;
salut_nom(69); -- Baba
salut_nom(5); -- Choupi
salut_nom(29); -- Fiero
salut_nom(54); —- Bubulle

CALL

Bloc

Cette fois, pas d’erreur. Le dernier appel (avec Bubulle) n’affiche simplement rien.

Il faut au minimum une instruction ou un bloc d’instructions par clause WHEN et par clause
ELSE. Un bloc vide BEGIN END; est donc nécessaire si 'on ne veut rien exécuter.

V.5.2.3. Utiliser une structure conditionnelle directement dans une requéte

Jusqu’ici, on a vu l'usage des structures conditionnelles dans des procédures stockées. Il est
cependant possible d’utiliser une structure CASE dans une simple requéte.

Par exemple, écrivons une requéte SELECT suivant le méme principe que la procédure mes-

sage_sexe() :

1 SELECT id, nom, CASE
2 WHEN sexe = 'M' THEN 'Je suis un male !'
3 WHEN sexe = 'F' THEN 'Je suis une femelle !'
4 ELSE 'Je suis en plein questionnement existentiel...'
5 END AS message
6 FROM Animal
7 WHERE id IN (9, 8, 6);
id nom message
6 Bobosse Je suis une femelle!
8 Bagherra Je suis un male!

396

V. Sécuriser et automatiser ses actions

NULL

Je suis en plein questionnement
existentiel

Quelques remarques :

— On peut utiliser les deux syntaxes de CASE.

— 11 faut cléturer le CASE par END, et non par END CASE (et bien siir ne pas mettre de [; |
si la requéte n’est pas finie).
— Ce n’est pas limité aux clauses SELECT, on peut tout a fait utiliser un CASE dans une

clause WHERE par exemple.

— Ce n’est par conséquent pas non plus limité aux requétes SELECT, on peut 'utiliser dans

n’importe quelle requéte.

Il n’est par contre pas possible d’utiliser une structure IF dans une requéte. Cependant, il existe
une fonction IF (), beaucoup plus limitée, dont la syntaxe est la suivante :

IF(condition, valeur_si_vrai, valeur_si_faux)

Exemple :

SELECT nom, IF(sexe = 'M',

'Je suis un male',

'Je ne suis pas un midle') AS sexe

FROM Animal

WHERE espece_id = 5;
nom sexe
Baba Je ne suis pas un male
Bibo Je suis un male
Momy Je ne suis pas un male
Popi Je suis un male
Mimi Je ne suis pas un male

V.5.3. Boucles

Une boucle est une structure qui permet de répéter plusieurs fois une série d’instructions. Il
existe trois types de boucles en MySQL : WHILE, LOOP et REPEAT.

397

V. Sécuriser et automatiser ses actions

V.5.3.1. La boucle WHILE

La boucle WHILE permet de répéter une série d’instructions tant que la condition donnée
reste vraie.

1 WHILE condition DO -- Attention de ne pas oublier le DO, erreur
classique
2 instructions

3 END WHILE;

Exemple : la procédure suivante affiche les nombres entiers de 1 & p_nombre (passé en
parameétre).

1 DELIMITER |

2 | CREATE PROCEDURE compter_jusque_while(IN p_nombre INT)

3 BEGIN

4 DECLARE v_i INT DEFAULT 1;

5

6 WHILE v_i <= p_nombre DO

7 SELECT v_i AS nombre;

8

9 SET v_i = v_i + 1; -- A ne surtout pas oublier, sinon la
condition restera vraie

10 END WHILE;

11 END |

12 DELIMITER ;

13

14 | CALL compter_jusque_while(3);

Vérifiez que votre condition devient bien fausse apres un certain nombre d’itérations de la
boucle. Sinon, vous vous retrouvez avec une boucle infinie (qui ne s’arréte jamais).

V.5.3.2. La boucle REPEAT

La boucle REPEAT travaille en quelque sorte de maniere opposée a WHILE, puisqu’elle exécute
des instructions de la boucle jusqu’a ce que la condition donnée devienne vraie.

Exemple : voici la méme procédure écrite avec une boucle REPEAT.

1 DELIMITER |
2 | CREATE PROCEDURE compter_jusque_repeat(IN p_nombre INT)
3 BEGIN

398

V. Sécuriser et automatiser ses actions

4 DECLARE v_i INT DEFAULT 1;

5

6 REPEAT

7 SELECT v_i AS nombre;

8

9 SET v_i = v_i + 1; -- A ne surtout pas oublier, sinon la
condition restera vraie

10 UNTIL v_i > p_nombre END REPEAT;

11 END |

12 DELIMITER ;

13

14 CALL compter_jusque_repeat(3);

Attention, comme la condition d’une boucle REPEAT est vérifiée apres le bloc d’instructions
de la boucle, on passe au moins une fois dans la boucle, méme si la condition est
tout de suite fausse!

Test
1|-- Condition fausse des le départ, on ne rentre pas dans la boucle
2 | CALL compter_jusque_while(0);
3
4 |-- Condition fausse des le départ, on rentre quand méme une fois

dans la boucle
5 CALL compter_jusque_repeat(0);

V.5.3.3. Donner un label a une boucle

Il est possible de donner un label (un nom) a une boucle, ou a un bloc d’instructions défini par
BEGIN... END. Il suffit pour cela de faire précéder 'ouverture de la boucle/du bloc par ce label,

suivi de [:]

La fermeture de la boucle/du bloc peut alors faire référence a ce label (mais ce n’est pas
obligatoire).

Un label ne peut pas dépasser 16 caracteres.

Exemples
1 |-- Boucle WHILE
2 ______________

399

V. Sécuriser et automatiser ses actions

3 | super_while: WHILE condition DO -- La boucle a pour label
"super_while"
4 instructions
5 END WHILE super_while; -— On ferme en donnant le label
de 1la boucle (facultatif)
6
7 | -- Boucle REPEAT
8 _______________
9 repeat_genial: REPEAT -— La boucle s'appelle
"repeat_genial"
10 instructions
11 UNTIL condition END REPEAT; -- Cette fois, on choisit de ne
pas faire référence au label lors de la fermeture
12
13 |-- Bloc d'instructions
4 |\-- ——————————————-
15 bloc_extra: BEGIN -— Le bloc a pour Tlabel
"bloc_extra"
16 instructions

17 END bloc_extra;

Mais en quoi cela peut-il étre utile ?

D’une part, cela peut permettre de clarifier le code lorsqu’il y a beaucoup de boucles et de
blocs d’instructions imbriqués. D’autre part, il est nécessaire de donner un label aux boucles et
aux blocs d’instructions pour lesquels on veut pouvoir utiliser les instructions ITERATE et
LEAVE.

V.5.3.4. Lesinstructions LEAVE et ITERATE
V.5.3.4.1. LEAVE : quitter la boucle ou le bloc d’instructions

L’instruction LEAVE peut s’utiliser dans une boucle ou un bloc d’instructions et déclenche
la sortie immédiate de la structure dont le label est donné.

1 LEAVE label_structure;

Exemple : cette procédure incrémente de 1, et affiche, un nombre entier passé en parametre.
Et cela, 4 fois maximum. Mais si I'on trouve un multiple de 10, la boucle s’arréte.

1 DELIMITER |
2 | CREATE PROCEDURE test_leavel(IN p_nombre INT)
3 | BEGIN

400

V. Sécuriser et automatiser ses actions

4 DECLARE v_i INT DEFAULT 4;
5
6 SELECT 'Avant la boucle WHILE';
-
8 whilel: WHILE v_i > © DO
)
10 SET p_nombre = p_nombre + 1; -- On incrémente le
nombre de 1
11
12 IF p_nombre%l1® = 0 THEN -— Si p_nombre est
divisible par 10,
13 SELECT 'Stop !' AS 'Multiple de 10';
14 LEAVE whilel; -- On quitte la boucle
WHILE.
15 END IF;
16
17 SELECT p_nombre; -- On affiche p_nombre
18 SET v_i = v_i - 1; -— Attention de ne pas
1'oublier
19
20 END WHILE whilel;
21
22 SELECT 'Apres la boucle WHILE';
23 END]|
24 DELIMITER ;
25
26 |CALL test_leavel(3); -- La boucle s'exécutera 4 fois

Avant la boucle WHILE

Avant la boucle WHILE

p__nombre

4

p__nombre
5

p__nombre
6

p__nombre

401

V. Sécuriser et automatiser ses actions

Apres la boucle WHILE

Apres la boucle WHILE

1 |CALL test_leavel(8); -- La boucle s'arrétera des qu'on atteint 10

Avant la boucle WHILE

Avant la boucle WHILE

p__nombre

Multiple de 10

Stop !

Apres la boucle WHILE

Apres la boucle WHILE

Il est par conséquent possible d’utiliser LEAVE pour provoquer la fin de la procédure stockée.

Exemple : voici la méme procédure. Cette fois-ci un multiple de 10 provoque 'arrét de toute
la procédure, pas seulement de la boucle WHILE.

1 DELIMITER |

2 | CREATE PROCEDURE test_leave2(IN p_nombre INT)

3 corps_procedure: BEGIN -— On donne un
label au bloc d'instructions principal

4 DECLARE v_i INT DEFAULT 4;

5

6 SELECT 'Avant la boucle WHILE';

7 whilel: WHILE v_i > © DO

8 SET p_nombre = p_nombre + 1; -- On 1incrémente

le nombre de 1

402

V. Sécuriser et automatiser ses actions

IF p_nombre%10 = © THEN -- Si p_nombre est
divisible par 10,
SELECT 'Stop !' AS 'Multiple de 10';
LEAVE corps_procedure; -- je quitte 1la
procédure.

END IF;

SELECT p_nombre; -— On affiche
p_nombre

SET v_i = v_i - 1; -- Attention de ne

pas l'oublier
END WHILE whilel;

SELECT 'Apres la boucle WHILE';
END |
DELIMITER ;

CALL test_leave2(8);

'"Aprés la boucle WHILE' ne s’affiche plus lorsque 'instruction LEAVE est déclenchée, puisque
I’on quitte la procédure stockée avant d’arriver a I'instruction SELECT qui suit la boucle WHILE.

En revanche, LEAVE ne permet pas de quitter directement une structure conditionnelle (IF
ou CASE). Il n’est d’ailleurs pas non plus possible de donner un label a ces structures. Cette
restriction est cependant aisément contournable en utilisant les blocs d’instructions.

Exemple : la procédure suivante affiche les nombres de 4 a 1, en précisant s’ils sont pairs. Sauf
pour le nombre 2, pour lequel une instruction LEAVE empéche 'affichage habituel.

DELIMITER |
CREATE PROCEDURE test_leave3()
BEGIN

DECLARE v_i INT DEFAULT 4;

WHILE v_i > © DO

IF v_1i%2 = 0 THEN
if_pair: BEGIN
IF v_i = 2 THEN -— S v_i vaut 2
LEAVE if_pair; -— On quitte le
bloc "if_pair", ce qui revient a quitter la
structure IF v_1i%2 = 0
END IF;
SELECT CONCAT(v_i, ' est pair') AS message;
END if_pair;
ELSE
if_impair: BEGIN
SELECT CONCAT(v_i, ' est 1impair') AS message;

403

V. Sécuriser et automatiser ses actions

18 END if_impair;
19 END IF;

20

21 SET v_i = v_i - 1;
22 END WHILE;

23 END|

24 DELIMITER ;

25

26 | CALL test_leave3();

message
4 est pair

message
3 est impair

message
1 est impair

'2 est pair' n’est pas affiché, puisqu’on a quitté le IF avant cet affichage.

V.5.3.4.2. ITERATE : déclencher une nouvelle itération de la boucle

Cette instruction ne peut étre utilisée que dans une boucle. Lorsqu’elle est exécutée, une
nouvelle itération de la boucle commence. Toutes les instructions suivant ITERATE dans
la boucle sont ignorées.

Exemple : la procédure suivante affiche les nombres de 1 a 3, avec un message avant le IF et
apres le IF. Sauf pour le nombre 2, qui relance une itération de la boucle dans le IF.

1 DELIMITER |

2 | CREATE PROCEDURE test_diterate()

3 BEGIN

4 DECLARE v_i INT DEFAULT 0;

5

6 boucle_while: WHILE v_i < 3 DO
7 SET v_i = v_i + 1;

8 SELECT v_i, 'Avant IF' AS message;
9

10 IF v_i = 2 THEN

11 ITERATE boucle_while;

404

V. Sécuriser et automatiser ses actions

12 END IF;

13

14 SELECT v_1i, 'Apres IF' AS message; -- Ne sera pas exécuté
pour v_i = 2

15 END WHILE;

16 END |

17 DELIMITER ;

18

19 CALL test_iterate();

v_i message
1 Avant IF

v_i message
1 Apres IF

v_i message
2 Avant IF

v_i message
3 Avant IF

v_i message
3 Apres IF

Attention a ne pas faire de boucle infinie avec ITERATE, on oublie facilement que cette
instruction empéche 'exécution de toutes les instructions qui la suivent dans la boucle. Si
j’avais mis par exemple SET v_i = v_1i + 1; apres ITERATE et non avant, la boucle serait
restée coincée a v_i = 2.

V.5.3.5. La boucle LOOP

On a gardé la boucle LOOP pour la fin, parce qu’elle est un peu particuliere. En effet, voici sa
syntaxe :

405

V. Sécuriser et automatiser ses actions

[label:] LOOP
instructions
END LOOP [label]

Vous voyez bien : il n’est question de condition nulle part. En fait, une boucle LOOP doit intégrer
dans ses instructions un élément qui va la faire s’arréter : typiquement une instruction LEAVE.
Sinon, c’est une boucle infinie.

Exemple : & nouveau une procédure qui affiche les nombres entiers de 1 & p__nombre.

DELIMITER |

CREATE PROCEDURE compter_jusque_loop(IN p_nombre INT)
BEGIN
DECLARE v_i INT DEFAULT 1;

boucle_loop: LOOP
SELECT v_i AS nombre;

SET v_i = v_i + 1;

IF v_i > p_nombre THEN
LEAVE boucle_loop;
END IF;
END LOOP;
END |
DELIMITER ;

CALL compter_jusque_loop(3);

V.5.3.6. Enrésumé

— Un bloc d’instructions est délimité par BEGIN et END. Il est possible d'imbriquer plusieurs
blocs d’instructions.

— Une variable locale est définie dans un bloc d’instructions grace a la commande DECLARE
Une fois la fin du bloc d’instructions atteinte, toutes les variables locales qui y ont été
déclarées sont supprimées.

— Une structure conditionnelle permet d’exécuter une série d’instructions si une condition
est respectée. Les deux structures conditionnelles de MySQL sont IF et CASE.

— Une boucle est une structure qui permet de répéter une série d’instructions un certain
nombre de fois. Il existe trois types de boucle pour MySQL : WHILE, REPEAT et LOOP.

— L’instruction LEAVE permet de quitter un bloc d’instructions ou une boucle.

— L’instruction ITERATE permet de relancer une itération d’une boucle.

406

	V Sécuriser et automatiser ses actions
	V.4 Procédures stockées
	V.4.1 Création et utilisation d'une procédure
	V.4.1.1 Procédure avec une seule requête
	V.4.1.2 Procédure avec un bloc d'instructions
	V.4.1.3 Délimiteur
	V.4.1.4 Création d'une procédure stockée
	V.4.1.5 Utilisation d'une procédure stockée

	V.4.2 Les paramètres d'une procédure stockée
	V.4.2.1 Sens des paramètres
	V.4.2.2 Syntaxe
	V.4.2.3 Exemples

	V.4.3 Suppression d'une procédure
	V.4.4 Avantages, inconvénients et usage des procédures stockées
	V.4.4.1 Avantages
	V.4.4.2 Inconvénients
	V.4.4.3 Conclusion et usage
	V.4.4.4 En résumé

	Contenu masqué

	V.5 Structurer ses instructions
	V.5.1 Blocs d'instructions et variables locales
	V.5.1.1 Blocs d'instructions
	V.5.1.2 Variables locales

	V.5.2 Structures conditionnelles
	V.5.2.1 La structure IF
	V.5.2.2 La structure CASE
	V.5.2.3 Utiliser une structure conditionnelle directement dans une requête

	V.5.3 Boucles
	V.5.3.1 La boucle WHILE
	V.5.3.2 La boucle REPEAT
	V.5.3.3 Donner un label à une boucle
	V.5.3.4 Les instructions LEAVE et ITERATE
	V.5.3.5 La boucle LOOP
	V.5.3.6 En résumé

