
V.4. Procédures stockées

Les procédures stockées sont disponibles depuis la version 5 de MySQL, et permettent d’auto-
matiser des actions, qui peuvent être très complexes.

Une procédure stockée est en fait une série d’instructions SQL désignée par un nom. Lorsque
l’on crée une procédure stockée, on l’enregistre dans la base de données que l’on utilise, au
même titre qu’une table par exemple. Une fois la procédure créée, il est possible d’appeler
celle-ci, par son nom. Les instructions de la procédure sont alors exécutées.

Contrairement aux requêtes préparées, qui ne sont gardées en mémoire que pour la session
courante, les procédures stockées sont, comme leur nom l’indique, stockées de manière
durable, et font bien partie intégrante de la base de données dans laquelle elles sont
enregistrées.

V.4.1. Création et utilisation d’une procédure

Voyons tout de suite la syntaxe à utiliser pour créer une procédure :

 CREATE PROCEDURE nom_procedure ([parametre1 [, parametre2, ...]])
 corps de la procédure;

Décodons tout ceci.

— CREATE PROCEDURE : sans surprise, il s’agit de la commande à exécuter pour créer une
procédure. On fait suivre cette commande du nom que l’on veut donner à la nouvelle
procédure.

— ([parametre1 [, parametre2, ...]]) : après le nom de la procédure viennent des
parenthèses. Celles-ci sont obligatoires ! À l’intérieur de ces parenthèses, on définit
les éventuels paramètres de la procédure. Ces paramètres sont des variables qui pourront
être utilisées par la procédure.

— corps de la procédure : c’est là que l’on met le contenu de la procédure, ce qui va être
exécuté lorsqu’on lance la procédure. Cela peut être soit une seule requête, soit un
bloc d’instructions.

i
Les noms des procédures stockées ne sont pas sensibles à la casse.

370

V. Sécuriser et automatiser ses actions

V.4.1.1. Procédure avec une seule requête

Voici une procédure toute simple, sans paramètres, qui va juste afficher toutes les races d’ani-
maux.

 CREATE PROCEDURE afficher_races_requete() -- pas de paramètres dans
les parenthèses

 SELECT id, nom, espece_id, prix FROM Race;

V.4.1.2. Procédure avec un bloc d’instructions

Pour délimiter un bloc d’instructions (qui peut donc contenir plus d’une instruction), on utilise
les mots BEGIN et END.

 BEGIN
 -- Série d'instructions
 END;

Exemple : reprenons la procédure précédente, mais en utilisant un bloc d’instructions.

 CREATE PROCEDURE afficher_races_bloc() -- pas de paramètres dans
les parenthèses

 BEGIN
 SELECT id, nom, espece_id, prix FROM Race;
 END;

Malheureusement…

 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '' at line 3

?
Que s’est-il passé ? La syntaxe semble correcte…

Les mots-clés sont bons, il n’y a pas de paramètres mais on a bien mis les parenthèses, BEGIN
et END sont tous les deux présents. Tout cela est correct, et pourtant, nous avons visiblement
omis un détail.

Peut-être aurez-vous compris que le problème se situe au niveau du caractère ; : en effet,
un ; termine une instruction SQL. Or, on a mis un ; à la suite de SELECT * FROM Race;.
Cela semble logique, mais pose problème puisque c’est le premier ; rencontré par l’instruction
CREATE PROCEDURE, qui naturellement pense devoir s’arrêter là. Ceci déclenche une erreur

371

V. Sécuriser et automatiser ses actions

puisqu’en réalité, l’instruction CREATE PROCEDURE n’est pas terminée : le bloc d’instructions
n’est pas complet !

?
Comment faire pour écrire des instructions à l’intérieur d’une instruction alors ?

Il suffit de changer le délimiteur !

V.4.1.3. Délimiteur

Ce qu’on appelle délimiteur, c’est tout simplement (par défaut), le caractère ; . C’est-à-dire le
caractère qui permet de délimiter les instructions. Or, il est tout à fait possible de définir le
délimiteur manuellement, de manière à ce que ; ne signifie plus qu’une instruction se termine.
Auquel cas le caractère ; pourra être utilisé à l’intérieur d’une instruction, et donc pourra
être utilisé dans le corps d’une procédure stockée.

Pour changer le délimiteur, il suffit d’utiliser cette commande :

 DELIMITER |

À partir de maintenant, vous devrez utiliser le caractère || | pour signaler la fin d’une instruction. || ; ne
sera plus compris comme tel par votre session.

 SELECT 'test'|

test

test

i
DELIMITER n’agit que pour la session courante.

Vous pouvez utiliser le (ou les) caractère(s) de votre choix comme délimiteur. Bien entendu, il
vaut mieux choisir quelque chose qui ne risque pas d’être utilisé dans une instruction. Bannissez
donc les lettres, chiffres, @ (qui servent pour les variables utilisateurs) et les \ (qui servent
à échapper les caractères spéciaux).

Les deux délimiteurs suivants sont les plus couramment utilisés :

 DELIMITER //
 DELIMITER |

372

V. Sécuriser et automatiser ses actions

Bien ! Ceci étant réglé, reprenons !

V.4.1.4. Création d’une procédure stockée

 DELIMITER | -- On change le délimiteur
 CREATE PROCEDURE afficher_races() -- toujours pas de

paramètres, toujours des parenthèses
 BEGIN
 SELECT id, nom, espece_id, prix
 FROM Race; -- Cette fois, le ; ne nous

embêtera pas
 END| -- Et on termine bien sûr la

commande CREATE PROCEDURE par notre nouveau délimiteur

Cette fois-ci, tout se passe bien. La procédure a été créée.

i
Lorsqu’on utilisera la procédure, quel que soit le délimiteur défini par DELIMITER, les
instructions à l’intérieur du corps de la procédure seront bien délimitées par ; . En effet,
lors de la création d’une procédure, celle-ci est interprétée – on dit aussi ”parsée” – par le
serveur MySQL et le parseur des procédures stockées interprétera toujours ; comme
délimiteur. Il n’est pas influencé par la commande DELIMITER.

Les procédures stockées n’étant que très rarement composées d’une seule instruction, on utilise
presque toujours un bloc d’instructions pour le corps de la procédure.

V.4.1.5. Utilisation d’une procédure stockée

Pour appeler une procédure stockée, c’est-à-dire déclencher l’exécution du bloc d’instructions
constituant le corps de la procédure, il faut utiliser le mot-clé CALL, suivi du nom de la procédure
appelée, puis de parenthèses (avec éventuellement des paramètres).

 CALL afficher_races()| -- le délimiteur est toujours | !!!

id nom espece_id prix

1 Berger allemand 1 485.00

2 Berger blanc suisse 1 935.00

3 Singapura 2 985.00

4 Bleu russe 2 835.00

373

V. Sécuriser et automatiser ses actions

5 Maine coon 2 735.00

7 Sphynx 2 1235.00

8 Nebelung 2 985.00

9 Rottweiller 1 600.00

Le bloc d’instructions a bien été exécuté (un simple SELECT dans ce cas).

V.4.2. Les paramètres d’une procédure stockée

Maintenant que l’on sait créer une procédure et l’appeler, intéressons-nous aux paramètres.

V.4.2.1. Sens des paramètres

Un paramètre peut être de trois sens différents : entrant (IN), sortant (OUT), ou les deux
(INOUT).

— IN : c’est un paramètre ”entrant”. C’est-à-dire qu’il s’agit d’un paramètre dont la valeur
est fournie à la procédure stockée. Cette valeur sera utilisée pendant la procédure (pour
un calcul ou une sélection par exemple).

— OUT : il s’agit d’un paramètre ”sortant”, dont la valeur va être établie au cours de la
procédure et qui pourra ensuite être utilisé en dehors de cette procédure.

— INOUT : un tel paramètre sera utilisé pendant la procédure, verra éventuellement sa
valeur modifiée par celle-ci, et sera ensuite utilisable en dehors.

V.4.2.2. Syntaxe

Lorsque l’on crée une procédure avec un ou plusieurs paramètres, chaque paramètre est défini
par trois éléments.

— Son sens : entrant, sortant, ou les deux. Si aucun sens n’est donné, il s’agira d’un
paramètre IN par défaut.

— Son nom : indispensable pour le désigner à l’intérieur de la procédure.
— Son type : INT, VARCHAR(10),…

V.4.2.3. Exemples

V.4.2.3.1. Procédure avec un seul paramètre entrant

Voici une procédure qui, selon l’id de l’espèce qu’on lui passe en paramètre, affiche les différentes
races existant pour cette espèce.

374

V. Sécuriser et automatiser ses actions

 DELIMITER | --
Facultatif si votre délimiteur est toujours |

 CREATE PROCEDURE afficher_race_selon_espece (IN p_espece_id INT)
-- Définition du paramètre p_espece_id

 BEGIN
 SELECT id, nom, espece_id, prix
 FROM Race
 WHERE espece_id = p_espece_id; --

Utilisation du paramètre
 END |
 DELIMITER ; --

On remet le délimiteur par défaut

i
Notez que, suite à la création de la procédure, j’ai remis le délimiteur par défaut ; .
Ce n’est absolument pas obligatoire, vous pouvez continuer à travailler avec ||||| si vous
préférez.

Pour l’utiliser, il faut donc passer une valeur en paramètre de la procédure. Soit directement,
soit par l’intermédiaire d’une variable utilisateur.

 CALL afficher_race_selon_espece(1);
 SET @espece_id := 2;
 CALL afficher_race_selon_espece(@espece_id);

id nom espece_id prix

1 Berger allemand 1 485.00

2 Berger blanc suisse 1 935.00

9 Rottweiller 1 600.00

id nom espece_id prix

3 Singapura 2 985.00

4 Bleu russe 2 835.00

5 Maine coon 2 735.00

7 Sphynx 2 1235.00

8 Nebelung 2 985.00

Le premier appel à la procédure affiche bien toutes les races de chiens, et le second, toutes les

375

V. Sécuriser et automatiser ses actions

races de chats.

!
J’ai fait commencer le nom du paramètre par ”p”. Ce n’est pas obligatoire, mais je vous
conseille de le faire systématiquement pour vos paramètres afin de les distinguer facilement.
Si vous ne le faites pas, soyez extrêmement prudents avec les noms que vous leur donnez.
Par exemple, dans cette procédure, si on avait nommé le paramètre _espece_id, cela aurait
posé problème, puisque espece_id est aussi le nom d’une colonne dans la table Race.
Qui plus est, c’est le nom de la colonne dont on se sert dans la condition WHERE. En cas
d’ambiguïté, MySQL interprète l’élément comme étant le paramètre, et non la colonne.
On aurait donc eu WHERE 1 = 1 par exemple, ce qui est toujours vrai.

V.4.2.3.2. Procédure avec deux paramètres, un entrant et un sortant

Voici une procédure assez similaire à la précédente, si ce n’est qu’elle n’affiche pas les races
existant pour une espèce, mais compte combien il y en a, puis stocke cette valeur dans un
paramètre sortant.

 DELIMITER |
 CREATE PROCEDURE compter_races_selon_espece (p_espece_id INT, OUT

p_nb_races INT)
 BEGIN
 SELECT COUNT(*) INTO p_nb_races
 FROM Race
 WHERE espece_id = p_espece_id;
 END |
 DELIMITER ;

Aucun sens n’a été précisé pour p_espece_id, il est donc considéré comme un paramètre
entrant.

SELECT COUNT(*) INTO p_nb_races. Voila qui est nouveau ! Comme vous l’avez sans doute
deviné, le mot-clé INTO placé après la clause SELECT permet d’assigner les valeurs sélec-
tionnées par ce SELECT à des variables, au lieu de simplement afficher les valeurs sélectionnées.
Dans le cas présent, la valeur du COUNT(*) est assignée à p_nb_races.

Pour pouvoir l’utiliser, il est nécessaire que le SELECT ne renvoie qu’une seule ligne, et il faut
que le nombre de valeurs sélectionnées et le nombre de variables à assigner soient égaux :

Exemple 1 : SELECT ... INTO correct avec deux valeurs

 SELECT id, nom INTO @var1, @var2
 FROM Animal
 WHERE id = 7;
 SELECT @var1, @var2;

376

V. Sécuriser et automatiser ses actions

@var1 @var2

7 Caroline

Le SELECT ... INTO n’a rien affiché, mais a assigné la valeur 7 à @var1, et la valeur 'Caroline'
à @var2, que nous avons ensuite affichées avec un autre SELECT.

Exemple 2 : SELECT ... INTO incorrect, car le nombre de valeurs sélectionnées (deux) n’est
pas le même que le nombre de variables à assigner (une).

 SELECT id, nom INTO @var1
 FROM Animal
 WHERE id = 7;

 ERROR 1222 (21000): The used SELECT statements have a different number of columns

Exemple 3 : SELECT ... INTO incorrect, car il y a plusieurs lignes de résultats.

 SELECT id, nom INTO @var1, @var2
 FROM Animal
 WHERE espece_id = 5;

 ERROR 1172 (42000): Result consisted of more than one row

Revenons maintenant à notre nouvelle procédure compter_races_selon_espece() et exécutons-la.
Pour cela, il va falloir lui passer deux paramètres : p_espece_id et p_nb_races. Le premier
ne pose pas de problème, il faut simplement donner un nombre, soit directement soit par
l’intermédiaire d’une variable, comme pour la procédure afficher_race_selon_espece(). Par
contre, pour le second, il s’agit d’un paramètre sortant. Il ne faut donc pas donner une valeur,
mais quelque chose dont la valeur sera déterminée par la procédure (grâce au SELECT ... INTO),
et qu’on pourra utiliser ensuite : une variable utilisateur !

 CALL compter_races_selon_espece (2, @nb_races_chats);

Et voilà ! La variable @nb_races_chats contient maintenant le nombre de races de chats. Il suffit
de l’afficher pour vérifier.

377

V. Sécuriser et automatiser ses actions

 SELECT @nb_races_chats;

@nb_races_chats

5

V.4.2.3.3. Procédure avec deux paramètres, un entrant et un entrant-sortant

Nous allons créer une procédure qui va servir à calculer le prix que doit payer un client. Pour
cela, deux paramètres sont nécessaires : l’animal acheté (paramètre IN), et le prix à payer
(paramètre INOUT). La raison pour laquelle le prix est un paramètre à la fois entrant et sortant
est qu’on veut pouvoir, avec cette procédure, calculer simplement un prix total dans le cas où
un client achèterait plusieurs animaux. Le principe est simple : si le client n’a encore acheté
aucun animal, le prix est de 0. Pour chaque animal acheté, on appelle la procédure, qui ajoute
au prix total le prix de l’animal en question. Une fois n’est pas coutume, commençons par voir
les requêtes qui nous serviront à tester la procédure. Cela devrait clarifier le principe. Je vous
propose d’essayer ensuite d’écrire vous-mêmes la procédure correspondante avant de regarder à
quoi elle ressemble.

 SET @prix = 0; -- On initialise @prix à 0

 CALL calculer_prix (13, @prix); -- Achat de Rouquine
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (24, @prix); -- Achat de Cartouche
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (42, @prix); -- Achat de Bilba
 SELECT @prix AS prix_intermediaire;

 CALL calculer_prix (75, @prix); -- Achat de Mimi
 SELECT @prix AS total;

On passe donc chaque animal acheté tour à tour à la procédure, qui modifie le prix en conséquence.
Voici quelques indices et rappels qui devraient vous aider à écrire vous-mêmes la procédure.

— Le prix n’est pas un nombre entier.
— Il est possible de faire des additions directement dans un SELECT.
— Pour déterminer le prix, il faut utiliser la fonction COALESCE().

Réponse :

Contenu masqué n°49

378

V. Sécuriser et automatiser ses actions

Et voici ce qu’affichera le code de test :

prix_intermediaire

485.00

prix_intermediaire

685.00

prix_intermediaire

1420.00

total

1430.00

Voilà qui devrait nous simplifier la vie. Et nous n’en sommes qu’au début des possibilités des
procédures stockées !

V.4.3. Suppression d’une procédure

Vous commencez à connaître cette commande : pour supprimer une procédure, on utilise DROP
(en précisant qu’il s’agit d’une procédure).

Exemple :

 DROP PROCEDURE afficher_races;

Pour rappel, les procédures stockées ne sont pas détruites à la fermeture de la session mais
bien enregistrées comme un élément de la base de données, au même titre qu’une table par
exemple.

Notons encore qu’il n’est pas possible de modifier une procédure directement. La seule façon de
modifier une procédure existante est de la supprimer puis de la recréer avec les modifications.

i
Il existe bien une commande ALTER PROCEDURE, mais elle ne permet de changer ni les
paramètres, ni le corps de la procédure. Elle permet uniquement de changer certaines
caractéristiques de la procédure, et ne sera pas couverte dans ce cours.

379

V. Sécuriser et automatiser ses actions

V.4.4. Avantages, inconvénients et usage des procédures
stockées

V.4.4.1. Avantages

Les procédures stockées permettent de réduire les allers-retours entre le client et le
serveur MySQL. En effet, si l’on englobe en une seule procédure un processus demandant
l’exécution de plusieurs requêtes, le client ne communique qu’une seule fois avec le serveur (pour
demander l’exécution de la procédure) pour exécuter la totalité du traitement. Cela permet
donc un certain gain en performance.

Elles permettent également de sécuriser une base de données. Par exemple, il est possible de
restreindre les droits des utilisateurs de façon à ce qu’ils puissent uniquement exécuter
des procédures. Finis les DELETE dangereux ou les UPDATE inconsidérés. Chaque requête
exécutée par les utilisateurs est créée et contrôlée par l’administrateur de la base de données
par l’intermédiaire des procédures stockées.

Cela permet ensuite de s’assurer qu’un traitement est toujours exécuté de la même
manière, quelle que soit l’application/le client qui le lance. Il arrive par exemple qu’une
même base de données soit exploitée par plusieurs applications, lesquelles peuvent être écrites
avec différents langages. Si on laisse chaque application avoir son propre code pour un même
traitement, il est possible que des différences apparaissent (distraction, mauvaise communication,
erreur ou autre). Par contre, si chaque application appelle la même procédure stockée, ce risque
disparaît.

V.4.4.2. Inconvénients

Les procédures stockées ajoutent évidemment à la charge sur le serveur de données.
Plus on implémente de logique de traitement directement dans la base de données, moins le
serveur est disponible pour son but premier : le stockage de données.

Par ailleurs, certains traitements seront toujours plus simples et plus courts à écrire (et donc à
maintenir) s’ils sont développés dans un langage informatique adapté. A fortiori lorsqu’il s’agit
de traitements complexes. La logique qu’il est possible d’implémenter avec MySQL
permet de nombreuses choses, mais reste assez basique.

Enfin, la syntaxe des procédures stockées diffère beaucoup d’un SGBD à un autre.
Par conséquent, si l’on désire en changer, il faudra procéder à un grand nombre de corrections
et d’ajustements.

V.4.4.3. Conclusion et usage

Comme souvent, tout est question d’équilibre. Il faut savoir utiliser des procédures quand c’est
utile, quand on a une bonne raison de le faire. Il ne sert à rien d’en abuser. Pour une base
contenant des données ultrasensibles, une bonne gestion des droits des utilisateurs couplée à
l’usage de procédures stockées peut se révéler salutaire. Pour une base de données destinée
à être utilisée par plusieurs applications différentes, on choisira de créer des procédures pour

380

V. Sécuriser et automatiser ses actions

les traitements généraux et/ou pour lesquels la moindre erreur peut poser de gros problèmes.
Pour un traitement long, impliquant de nombreuses requêtes et une logique simple, on peut
sérieusement gagner en performance en le faisant dans une procédure stockée (a fortiori si ce
traitement est souvent lancé).

À vous de voir quelles procédures sont utiles pour votre application et vos besoins.

V.4.4.4. En résumé
— Une procédure stockée est un ensemble d’instructions que l’on peut exécuter sur

commande.
— Une procédure stockée est un objet de la base de données stocké de manière durable,

au même titre qu’une table. Elle n’est pas supprimée à la fin de la session comme l’est
une requête préparée.

— On peut passer des paramètres à une procédure stockée, qui peuvent avoir trois sens :
IN (entrant), OUT (sortant) ou INOUT (les deux).

— SELECT ... INTO permet d’assigner des données sélectionnées à des variables ou des
paramètres, à condition que le SELECT ne renvoie qu’une seule ligne, et qu’il y ait autant
de valeurs sélectionnées que de variables à assigner.

— Les procédures stockées peuvent permettre de gagner en performance en diminuant les
allers-retours entre le client et le serveur. Elles peuvent également aider à sécuriser une
base de données et à s’assurer que les traitements sensibles soient toujours exécutés
de la même manière.

— Par contre, elle ajoute à la charge du serveur et sa syntaxe n’est pas toujours
portable d’un SGBD à un autre.

Contenumasqué

Contenumasqué n°49

 DELIMITER |

 CREATE PROCEDURE calculer_prix (IN p_animal_id INT, INOUT p_prix

DECIMAL(7,2))
 BEGIN
 SELECT p_prix + COALESCE(Race.prix, Espece.prix) INTO p_prix
 FROM Animal
 INNER JOIN Espece ON Espece.id = Animal.espece_id
 LEFT JOIN Race ON Race.id = Animal.race_id
 WHERE Animal.id = p_animal_id;
 END |

 DELIMITER ;

381

V. Sécuriser et automatiser ses actions

Retourner au texte.

382

V.5. Structurer ses instructions

Lorsque l’on écrit une série d’instructions, par exemple dans le corps d’une procédure stockée, il
est nécessaire d’être capable de structurer ses instructions. Cela va permettre d’instiller de la
logique dans le traitement : exécuter telles ou telles instructions en fonction des données
que l’on possède, répéter une instruction un certain nombre de fois, etc.

Voici quelques outils indispensables à la structuration des instructions :

— les variables locales : qui vont permettre de stocker et modifier des valeurs pendant
le déroulement d’une procédure ;

— les conditions : qui vont permettre d’exécuter certaines instructions seulement si une
certaine condition est remplie ;

— les boucles : qui vont permettre de répéter une instruction plusieurs fois.

Ces structures sont bien sûr utilisables dans les procédures stockées, que nous avons vues au
chapitre précédent, mais pas uniquement. Elles sont utilisables dans tout objet définissant
une série d’instructions à exécuter. C’est le cas des fonctions stockées (non couvertes
par ce cours et qui forment avec les procédures stockées ce qu’on appelle les ”routines”), des
événements (non couverts), et également des triggers, auxquels un chapitre est consacré à la
fin de cette partie.

V.5.1. Blocs d’instructions et variables locales

V.5.1.1. Blocs d’instructions

Nous avons vu qu’un bloc d’instructions était défini par les mots-clés BEGIN et END, entre
lesquels on met les instructions qui composent le bloc (de zéro à autant d’instructions que l’on
veut, séparées bien sûr d’un ;).

Il est possible d’imbriquer plusieurs blocs d’instructions. De même, à l’intérieur d’un bloc
d’instructions, plusieurs blocs d’instructions peuvent se suivre. Ceux-ci permettent donc de
structurer les instructions en plusieurs parties distinctes et sur plusieurs niveaux d’imbrica-
tion différents.

 BEGIN
 SELECT 'Bloc d''instructions principal';

 BEGIN
 SELECT

'Bloc d''instructions 2, imbriqué dans le bloc principal';

383

V. Sécuriser et automatiser ses actions

 BEGIN
 SELECT

'Bloc d''instructions 3, imbriqué dans le bloc d''instructions 2';
 END;
 END;

 BEGIN
 SELECT

'Bloc d''instructions 4, imbriqué dans le bloc principal';
 END;

 END;

i
Cet exemple montre également l’importance de l’indentation pour avoir un code lisible.
Ici, toutes les instructions d’un bloc sont au même niveau et décalées vers la droite par
rapport à la déclaration du bloc. Cela permet de voir en un coup d’œil où commence et
où se termine chaque bloc d’instructions.

V.5.1.2. Variables locales

Nous connaissons déjà les variables utilisateur, qui sont des variables désignées par @ . J’ai
également mentionné l’existence des variables système, qui sont des variables prédéfinies par
MySQL. Voyons maintenant les variables locales, qui peuvent être définies dans un bloc
d’instructions.

V.5.1.2.1. Déclaration d’une variable locale

La déclaration d’une variable locale se fait avec l’instruction DECLARE :

 DECLARE nom_variable type_variable [DEFAULT valeur_defaut];

Cette instruction doit se trouver au tout début du bloc d’instructions dans lequel la variable
locale sera utilisée (donc directement après le BEGIN).

On a donc une structure générale des blocs d’instructions qui se dégage :

 BEGIN
 -- Déclarations (de variables locales par exemple)

 -- Instructions (dont éventuels blocs d'instructions imbriqués)

384

V. Sécuriser et automatiser ses actions

 END;

i
Tout comme pour les variables utilisateur, le nom des variables locales n’est pas sensible
à la casse.

Si aucune valeur par défaut n’est précisée, la variable vaudra NULL tant que sa valeur n’est
pas changée. Pour changer la valeur d’une variable locale, on peut utiliser SET ou SELECT ...
INTO.

Exemple : voici une procédure stockée qui donne la date d’aujourd’hui et de demain :

 DELIMITER |
 CREATE PROCEDURE aujourdhui_demain ()
 BEGIN
 DECLARE v_date DATE DEFAULT CURRENT_DATE(); -- On

déclare une variable locale et on lui met une valeur par
défaut

 SELECT DATE_FORMAT(v_date, '%W %e %M %Y') AS Aujourdhui;

 SET v_date = v_date + INTERVAL 1 DAY; -- On

change la valeur de la variable locale
 SELECT DATE_FORMAT(v_date, '%W %e %M %Y') AS Demain;
 END|
 DELIMITER ;

Testons-la :

 SET lc_time_names = 'fr_FR';
 CALL aujourdhui_demain();

Aujourdhui

mardi 1 mai 2012

Demain

mercredi 2 mai 2012

!
Tout comme pour les paramètres, les variables locales peuvent poser problème si l’on ne
fait pas attention au nom qu’on leur donne. En cas de conflit (avec un nom de colonne par

385

V. Sécuriser et automatiser ses actions

!
exemple), comme pour les paramètres, le nom sera interprété comme désignant la variable
locale en priorité. Par conséquent, toutes mes variables locales seront préfixées par ”v_”.

V.5.1.2.2. Portée des variables locales dans un bloc d’instruction

Les variables locales n’existent que dans le bloc d’instructions dans lequel elles ont été déclarées.
Dès que le mot-clé END est atteint, toutes les variables locales du bloc sont détruites.

Exemple 1 :

 DELIMITER |
 CREATE PROCEDURE test_portee1()
 BEGIN
 DECLARE v_test1 INT DEFAULT 1;

 BEGIN
 DECLARE v_test2 INT DEFAULT 2;

 SELECT 'Imbriqué' AS Bloc;
 SELECT v_test1, v_test2;
 END;
 SELECT 'Principal' AS Bloc;
 SELECT v_test1, v_test2;

 END|
 DELIMITER ;

 CALL test_portee1();

Bloc

Imbriqué

v_test1 v_test2

1 2

Bloc

Principal

 ERROR 1054 (42S22): Unknown column 'v_test2' in 'field list'

386

V. Sécuriser et automatiser ses actions

La variable locale v_test2 existe bien dans le bloc imbriqué, puisque c’est là qu’elle est définie,
mais pas dans le bloc principal. v_test1 par contre existe dans le bloc principal (où elle est
définie), mais aussi dans le bloc imbriqué.

Exemple 2 :

 DELIMITER |
 CREATE PROCEDURE test_portee2()
 BEGIN
 DECLARE v_test1 INT DEFAULT 1;

 BEGIN
 DECLARE v_test2 INT DEFAULT 2;

 SELECT 'Imbriqué 1' AS Bloc;
 SELECT v_test1, v_test2;
 END;

 BEGIN
 SELECT 'imbriqué 2' AS Bloc;
 SELECT v_test1, v_test2;
 END;

 END|
 DELIMITER ;

 CALL test_portee2();

Bloc

Imbriqué 1

v_test1 v_test2

1 2

Bloc

imbriqué 2

 ERROR 1054 (42S22): Unknown column 'v_test2' in 'field list'

À nouveau, v_test1, déclarée dans le bloc principal, existe dans les deux blocs imbriqués. Par

387

V. Sécuriser et automatiser ses actions

contre, v_test2 n’existe que dans le bloc imbriqué dans lequel elle est déclarée.

!
Attention cependant à la subtilité suivante : si un bloc imbriqué déclare une variable locale
ayant le même nom qu’une variable locale déclarée dans un bloc d’un niveau supérieur, il
s’agira toujours de deux variables locales différentes, et seule la variable locale déclarée
dans le bloc imbriqué sera visible dans ce même bloc.

Exemple 3 :

 DELIMITER |
 CREATE PROCEDURE test_portee3()
 BEGIN
 DECLARE v_test INT DEFAULT 1;

 SELECT v_test AS 'Bloc principal';

 BEGIN
 DECLARE v_test INT DEFAULT 0;

 SELECT v_test AS 'Bloc imbriqué';
 SET v_test = 2;
 SELECT v_test AS 'Bloc imbriqué après modification';
 END;

 SELECT v_test AS 'Bloc principal';
 END |
 DELIMITER ;

 CALL test_portee3();

Bloc principal

1

Bloc imbriqué

0

Bloc imbriqué après modification

2

Bloc principal

388

V. Sécuriser et automatiser ses actions

1

La variable locale v_test est déclarée dans le bloc principal et dans le bloc imbriqué, avec
deux valeurs différentes. Mais lorsqu’on revient dans le bloc principal après exécution du bloc
d’instructions imbriqué, v_test a toujours la valeur qu’elle avait avant l’exécution de ce bloc et
sa deuxième déclaration. Il s’agit donc bien de deux variables locales distinctes.

V.5.2. Structures conditionnelles

Les structures conditionnelles permettent de déclencher une action ou une série d’instructions
lorsqu’une condition préalable est remplie.

MySQL propose deux structures conditionnelles : IF et CASE.

V.5.2.1. La structure IF

Voici la syntaxe de la structure IF :

 IF condition THEN instructions
 [ELSEIF autre_condition THEN instructions
 [ELSEIF ...]]
 [ELSE instructions]
 END IF;

V.5.2.1.1. Le cas le plus simple : si la condition est vraie, alors on exécute ces instructions

Voici la structure minimale d’un IF :

 IF condition THEN
 instructions
 END IF;

Soit on exécute les instructions (si la condition est vraie), soit on ne les exécute pas.

Exemple : la procédure suivante affiche 'J''ai déjà été adopté !', si c’est le cas, à partir
de l’id d’un animal :

 DELIMITER |
 CREATE PROCEDURE est_adopte(IN p_animal_id INT)

389

V. Sécuriser et automatiser ses actions

 BEGIN
 DECLARE v_nb INT DEFAULT 0; -- On crée une variable

locale

 SELECT COUNT(*) INTO v_nb -- On met le nombre de

lignes correspondant à l'animal
 FROM Adoption -- dans Adoption dans

notre variable locale
 WHERE animal_id = p_animal_id;

 IF v_nb > 0 THEN -- On teste si v_nb est

supérieur à 0 (donc si l'animal a été adopté)
 SELECT 'J''ai déjà été adopté !';
 END IF; -- Et on n'oublie surtout

pas le END IF et le ; final
 END |
 DELIMITER ;

 CALL est_adopte(3);
 CALL est_adopte(28);

Seul le premier appel à la procédure va afficher 'J''ai déjà été adopté !', puisque l’animal
3 est présent dans la table Adoption, contrairement à l’animal 28.

V.5.2.1.2. Deuxième cas : si ... alors, sinon ...

Grâce au mot-clé ELSE, on peut définir une série d’instructions à exécuter si la condition est
fausse.

!
ELSE ne doit pas être suivi de THEN.

Exemple : la procédure suivante affiche 'Je suis né avant 2010' ou 'Je suis né après
2010', selon la date de naissance de l’animal transmis en paramètre.

 DELIMITER |
 CREATE PROCEDURE avant_apres_2010(IN p_animal_id INT)
 BEGIN
 DECLARE v_annee INT;

 SELECT YEAR(date_naissance) INTO v_annee
 FROM Animal
 WHERE id = p_animal_id;

 IF v_annee < 2010 THEN
 SELECT 'Je suis né avant 2010' AS naissance;

390

V. Sécuriser et automatiser ses actions

 ELSE -- Pas de
THEN

 SELECT 'Je suis né après 2010' AS naissance;
 END IF; -- Toujours

obligatoire

 END |
 DELIMITER ;

 CALL avant_apres_2010(34); -- Né le 20/04/2008
 CALL avant_apres_2010(69); -- Né le 13/02/2012

V.5.2.1.3. Troisième et dernier cas : plusieurs conditions alternatives

Enfin, le mot-clé ELSEIF... THEN permet de vérifier d’autres conditions (en dehors de la
condition du IF), chacune ayant une série d’instructions définies à exécuter en cas de véracité.
Si plusieurs conditions sont vraies en même temps, seule la première rencontrée verra ses
instructions exécutées. On peut bien sûr toujours (mais ce n’est pas obligatoire) ajouter un
ELSE pour le cas où aucune condition ne serait vérifiée.

Exemple : cette procédure affiche un message différent selon le sexe de l’animal passé en
paramètre.

 DELIMITER |
 CREATE PROCEDURE message_sexe(IN p_animal_id INT)
 BEGIN
 DECLARE v_sexe VARCHAR(10);

 SELECT sexe INTO v_sexe
 FROM Animal
 WHERE id = p_animal_id;

 IF (v_sexe = 'F') THEN -- Première

possibilité
 SELECT 'Je suis une femelle !' AS sexe;
 ELSEIF (v_sexe = 'M') THEN -- Deuxième

possibilité
 SELECT 'Je suis un mâle !' AS sexe;
 ELSE -- Défaut
 SELECT 'Je suis en plein questionnement existentiel...' AS

sexe;
 END IF;
 END|
 DELIMITER ;

 CALL message_sexe(8); -- Mâle
 CALL message_sexe(6); -- Femelle

391

V. Sécuriser et automatiser ses actions

 CALL message_sexe(9); -- Ni l'un ni l'autre

Il peut bien sûr y avoir autant de ELSEIF... THEN que l’on veut (mais un seul ELSE).

V.5.2.2. La structure CASE

Deux syntaxes sont possibles pour utiliser CASE.

V.5.2.2.1. Première syntaxe : conditions d’égalité

 CASE valeur_a_comparer
 WHEN possibilite1 THEN instructions
 [WHEN possibilite2 THEN instructions] ...
 [ELSE instructions]
 END CASE;

Exemple : on reprend la procédure message_sexe(), et on l’adapte pour utiliser CASE.

 DELIMITER |
 CREATE PROCEDURE message_sexe2(IN p_animal_id INT)
 BEGIN
 DECLARE v_sexe VARCHAR(10);

 SELECT sexe INTO v_sexe
 FROM Animal
 WHERE id = p_animal_id;

 CASE v_sexe
 WHEN 'F' THEN -- Première

possibilité
 SELECT 'Je suis une femelle !' AS sexe;
 WHEN 'M' THEN -- Deuxième

possibilité
 SELECT 'Je suis un mâle !' AS sexe;
 ELSE -- Défaut
 SELECT 'Je suis en plein questionnement existentiel...'

AS sexe;
 END CASE;
 END|
 DELIMITER ;

 CALL message_sexe2(8); -- Mâle
 CALL message_sexe2(6); -- Femelle

392

V. Sécuriser et automatiser ses actions

 CALL message_sexe2(9); -- Ni l'un ni l'autre

On définit donc v_sexe comme point de comparaison. Chaque WHEN donne alors un élément
auquel v_sexe doit être comparé. Les instructions exécutées seront celles du WHEN dont l’élément
est égal à v_sexe. Le ELSE sera exécuté si aucun WHEN ne correspond.

Ici, on compare une variable locale (v_sexe) à des chaînes de caractères ('F' et 'M'), mais on
peut utiliser différents types d’éléments. Voici les principaux :

— des variables locales ;
— des variables utilisateur ;
— des valeurs constantes de tous types (0, 'chaîne', 5.67, '2012-03-23',…) ;
— des expressions (2 + 4, NOW(), CONCAT(nom, ' ', prenom),…) ;
— …

!
Cette syntaxe ne permet pas de faire des comparaisons avec NULL, puisqu’elle utilise une
comparaison de type valeur1 = valeur2. Or cette comparaison est inutilisable dans le
cas de NULL. Il faudra donc utiliser la seconde syntaxe, avec le test IS NULL.

V.5.2.2.2. Seconde syntaxe : toutes conditions

Cette seconde syntaxe ne compare pas un élément à différentes valeurs, mais utilise simplement
des conditions classiques et permet donc de faire des comparaisons de type ”plus grand que”,
”différent de”, etc. (bien entendu, elle peut également être utilisée pour des égalités).

 CASE
 WHEN condition THEN instructions
 [WHEN condition THEN instructions] ...
 [ELSE instructions]
 END CASE

Exemple : on reprend la procédure avant_apres_2010(), qu’on réécrit avec CASE, et en donnant
une possibilité en plus. De plus, on passe le message en paramètre OUT pour changer un peu.

 DELIMITER |
 CREATE PROCEDURE avant_apres_2010_case (IN p_animal_id INT, OUT

p_message VARCHAR(100))
 BEGIN
 DECLARE v_annee INT;

 SELECT YEAR(date_naissance) INTO v_annee
 FROM Animal
 WHERE id = p_animal_id;

393

V. Sécuriser et automatiser ses actions

 CASE
 WHEN v_annee < 2010 THEN
 SET p_message = 'Je suis né avant 2010.';
 WHEN v_annee = 2010 THEN
 SET p_message = 'Je suis né en 2010.';
 ELSE
 SET p_message = 'Je suis né après 2010.';
 END CASE;
 END |
 DELIMITER ;

 CALL avant_apres_2010_case(59, @message);
 SELECT @message;
 CALL avant_apres_2010_case(62, @message);
 SELECT @message;
 CALL avant_apres_2010_case(69, @message);
 SELECT @message;

V.5.2.2.3. Comportement particulier : aucune correspondance trouvée

En l’absence de clause ELSE, si aucune des conditions posées par les différentes clauses WHEN
n’est remplie (quelle que soit la syntaxe utilisée), une erreur est déclenchée.

Par exemple, cette procédure affiche une salutation différente selon la terminaison du nom de
l’animal passé en paramètre :

 DELIMITER |
 CREATE PROCEDURE salut_nom(IN p_animal_id INT)
 BEGIN
 DECLARE v_terminaison CHAR(1);

 SELECT SUBSTRING(nom, -1, 1) INTO v_terminaison -- Une

position négative signifie qu'on recule au lieu d'avancer.
 FROM Animal -- -1 est

donc la dernière lettre du nom.
 WHERE id = p_animal_id;

 CASE v_terminaison
 WHEN 'a' THEN
 SELECT 'Bonjour !' AS Salutations;
 WHEN 'o' THEN
 SELECT 'Salut !' AS Salutations;
 WHEN 'i' THEN
 SELECT 'Coucou !' AS Salutations;
 END CASE;

394

V. Sécuriser et automatiser ses actions

 END|
 DELIMITER ;

 CALL salut_nom(69); -- Baba
 CALL salut_nom(5); -- Choupi
 CALL salut_nom(29); -- Fiero
 CALL salut_nom(54); -- Bubulle

Salutations

Bonjour !

Salutations

Coucou !

Salutations

Salut !

 ERROR 1339 (20000): Case not found for CASE statement

L’appel de la procédure avec Bubulle présente un cas qui n’est pas couvert par les trois WHEN.
Une erreur est donc déclenchée

Donc, si l’on n’est pas sûr d’avoir couvert tous les cas possibles, il faut toujours ajouter une
clause ELSE pour éviter les erreurs. Si l’on veut qu’aucune instruction ne soit exécutée par le
ELSE, il suffit simplement de mettre un bloc d’instructions vide (BEGIN END;).

Exemple : reprenons la procédure salut_nom(), et ajoutons-lui une clause ELSE vide :

 DROP PROCEDURE salut_nom;
 DELIMITER |
 CREATE PROCEDURE salut_nom(IN p_animal_id INT)
 BEGIN
 DECLARE v_terminaison CHAR(1);

 SELECT SUBSTRING(nom, -1, 1) INTO v_terminaison
 FROM Animal
 WHERE id = p_animal_id;

 CASE v_terminaison
 WHEN 'a' THEN

395

V. Sécuriser et automatiser ses actions

 SELECT 'Bonjour !' AS Salutations;
 WHEN 'o' THEN
 SELECT 'Salut !' AS Salutations;
 WHEN 'i' THEN
 SELECT 'Coucou !' AS Salutations;
 ELSE
 BEGIN -- Bloc

d'instructions vide
 END;
 END CASE;

 END|
 DELIMITER ;

 CALL salut_nom(69); -- Baba
 CALL salut_nom(5); -- Choupi
 CALL salut_nom(29); -- Fiero
 CALL salut_nom(54); -- Bubulle

Cette fois, pas d’erreur. Le dernier appel (avec Bubulle) n’affiche simplement rien.

×
Il faut au minimum une instruction ou un bloc d’instructions par clause WHEN et par clause
ELSE. Un bloc vide BEGIN END; est donc nécessaire si l’on ne veut rien exécuter.

V.5.2.3. Utiliser une structure conditionnelle directement dans une requête

Jusqu’ici, on a vu l’usage des structures conditionnelles dans des procédures stockées. Il est
cependant possible d’utiliser une structure CASE dans une simple requête.

Par exemple, écrivons une requête SELECT suivant le même principe que la procédure mes-
sage_sexe() :

 SELECT id, nom, CASE
 WHEN sexe = 'M' THEN 'Je suis un mâle !'
 WHEN sexe = 'F' THEN 'Je suis une femelle !'
 ELSE 'Je suis en plein questionnement existentiel...'
 END AS message
 FROM Animal
 WHERE id IN (9, 8, 6);

id nom message

6 Bobosse Je suis une femelle !

8 Bagherra Je suis un mâle !

396

V. Sécuriser et automatiser ses actions

9 NULL Je suis en plein questionnement
existentiel...

Quelques remarques :

— On peut utiliser les deux syntaxes de CASE.
— Il faut clôturer le CASE par END, et non par END CASE (et bien sûr ne pas mettre de ;

si la requête n’est pas finie).
— Ce n’est pas limité aux clauses SELECT, on peut tout à fait utiliser un CASE dans une

clause WHERE par exemple.
— Ce n’est par conséquent pas non plus limité aux requêtes SELECT, on peut l’utiliser dans

n’importe quelle requête.

Il n’est par contre pas possible d’utiliser une structure IF dans une requête. Cependant, il existe
une fonction IF(), beaucoup plus limitée, dont la syntaxe est la suivante :

 IF(condition, valeur_si_vrai, valeur_si_faux)

Exemple :

 SELECT nom, IF(sexe = 'M', 'Je suis un mâle',
'Je ne suis pas un mâle') AS sexe

 FROM Animal
 WHERE espece_id = 5;

nom sexe

Baba Je ne suis pas un mâle

Bibo Je suis un mâle

Momy Je ne suis pas un mâle

Popi Je suis un mâle

Mimi Je ne suis pas un mâle

V.5.3. Boucles

Une boucle est une structure qui permet de répéter plusieurs fois une série d’instructions. Il
existe trois types de boucles en MySQL : WHILE, LOOP et REPEAT.

397

V. Sécuriser et automatiser ses actions

V.5.3.1. La boucle WHILE

La boucle WHILE permet de répéter une série d’instructions tant que la condition donnée
reste vraie.

 WHILE condition DO -- Attention de ne pas oublier le DO, erreur
classique

 instructions
 END WHILE;

Exemple : la procédure suivante affiche les nombres entiers de 1 à p_nombre (passé en
paramètre).

 DELIMITER |
 CREATE PROCEDURE compter_jusque_while(IN p_nombre INT)
 BEGIN
 DECLARE v_i INT DEFAULT 1;

 WHILE v_i <= p_nombre DO
 SELECT v_i AS nombre;

 SET v_i = v_i + 1; -- À ne surtout pas oublier, sinon la

condition restera vraie
 END WHILE;
 END |
 DELIMITER ;

 CALL compter_jusque_while(3);

!
Vérifiez que votre condition devient bien fausse après un certain nombre d’itérations de la
boucle. Sinon, vous vous retrouvez avec une boucle infinie (qui ne s’arrête jamais).

V.5.3.2. La boucle REPEAT

La boucle REPEAT travaille en quelque sorte de manière opposée à WHILE, puisqu’elle exécute
des instructions de la boucle jusqu’à ce que la condition donnée devienne vraie.

Exemple : voici la même procédure écrite avec une boucle REPEAT.

 DELIMITER |
 CREATE PROCEDURE compter_jusque_repeat(IN p_nombre INT)
 BEGIN

398

V. Sécuriser et automatiser ses actions

 DECLARE v_i INT DEFAULT 1;

 REPEAT
 SELECT v_i AS nombre;

 SET v_i = v_i + 1; -- À ne surtout pas oublier, sinon la

condition restera vraie
 UNTIL v_i > p_nombre END REPEAT;
 END |
 DELIMITER ;

 CALL compter_jusque_repeat(3);

!
Attention, comme la condition d’une boucle REPEAT est vérifiée après le bloc d’instructions
de la boucle, on passe au moins une fois dans la boucle, même si la condition est
tout de suite fausse !

Test

 -- Condition fausse dès le départ, on ne rentre pas dans la boucle
 CALL compter_jusque_while(0);

 -- Condition fausse dès le départ, on rentre quand même une fois

dans la boucle
 CALL compter_jusque_repeat(0);

V.5.3.3. Donner un label à une boucle

Il est possible de donner un label (un nom) à une boucle, ou à un bloc d’instructions défini par
BEGIN... END. Il suffit pour cela de faire précéder l’ouverture de la boucle/du bloc par ce label,
suivi de : .

La fermeture de la boucle/du bloc peut alors faire référence à ce label (mais ce n’est pas
obligatoire).

!
Un label ne peut pas dépasser 16 caractères.

Exemples

 -- Boucle WHILE
 -- ------------

399

V. Sécuriser et automatiser ses actions

 super_while: WHILE condition DO -- La boucle a pour label
"super_while"

 instructions
 END WHILE super_while; -- On ferme en donnant le label

de la boucle (facultatif)

 -- Boucle REPEAT
 -- -------------
 repeat_genial: REPEAT -- La boucle s'appelle

"repeat_genial"
 instructions
 UNTIL condition END REPEAT; -- Cette fois, on choisit de ne

pas faire référence au label lors de la fermeture

 -- Bloc d'instructions
 -- -------------------
 bloc_extra: BEGIN -- Le bloc a pour label

"bloc_extra"
 instructions
 END bloc_extra;

?
Mais en quoi cela peut-il être utile ?

D’une part, cela peut permettre de clarifier le code lorsqu’il y a beaucoup de boucles et de
blocs d’instructions imbriqués. D’autre part, il est nécessaire de donner un label aux boucles et
aux blocs d’instructions pour lesquels on veut pouvoir utiliser les instructions ITERATE et
LEAVE.

V.5.3.4. Les instructions LEAVE et ITERATE

V.5.3.4.1. LEAVE : quitter la boucle ou le bloc d’instructions

L’instruction LEAVE peut s’utiliser dans une boucle ou un bloc d’instructions et déclenche
la sortie immédiate de la structure dont le label est donné.

 LEAVE label_structure;

Exemple : cette procédure incrémente de 1, et affiche, un nombre entier passé en paramètre.
Et cela, 4 fois maximum. Mais si l’on trouve un multiple de 10, la boucle s’arrête.

 DELIMITER |
 CREATE PROCEDURE test_leave1(IN p_nombre INT)
 BEGIN

400

V. Sécuriser et automatiser ses actions

 DECLARE v_i INT DEFAULT 4;

 SELECT 'Avant la boucle WHILE';

 while1: WHILE v_i > 0 DO

 SET p_nombre = p_nombre + 1; -- On incrémente le

nombre de 1

 IF p_nombre%10 = 0 THEN -- Si p_nombre est

divisible par 10,
 SELECT 'Stop !' AS 'Multiple de 10';
 LEAVE while1; -- On quitte la boucle

WHILE.
 END IF;

 SELECT p_nombre; -- On affiche p_nombre
 SET v_i = v_i - 1; -- Attention de ne pas

l'oublier

 END WHILE while1;

 SELECT 'Après la boucle WHILE';
 END|
 DELIMITER ;

 CALL test_leave1(3); -- La boucle s'exécutera 4 fois

Avant la boucle WHILE

Avant la boucle WHILE

p_nombre

4

p_nombre

5

p_nombre

6

p_nombre

401

V. Sécuriser et automatiser ses actions

7

Après la boucle WHILE

Après la boucle WHILE

 CALL test_leave1(8); -- La boucle s'arrêtera dès qu'on atteint 10

Avant la boucle WHILE

Avant la boucle WHILE

p_nombre

9

Multiple de 10

Stop !

Après la boucle WHILE

Après la boucle WHILE

Il est par conséquent possible d’utiliser LEAVE pour provoquer la fin de la procédure stockée.

Exemple : voici la même procédure. Cette fois-ci un multiple de 10 provoque l’arrêt de toute
la procédure, pas seulement de la boucle WHILE.

 DELIMITER |
 CREATE PROCEDURE test_leave2(IN p_nombre INT)
 corps_procedure: BEGIN -- On donne un

label au bloc d'instructions principal
 DECLARE v_i INT DEFAULT 4;

 SELECT 'Avant la boucle WHILE';
 while1: WHILE v_i > 0 DO
 SET p_nombre = p_nombre + 1; -- On incrémente

le nombre de 1

402

V. Sécuriser et automatiser ses actions

 IF p_nombre%10 = 0 THEN -- Si p_nombre est
divisible par 10,

 SELECT 'Stop !' AS 'Multiple de 10';
 LEAVE corps_procedure; -- je quitte la

procédure.
 END IF;

 SELECT p_nombre; -- On affiche

p_nombre
 SET v_i = v_i - 1; -- Attention de ne

pas l'oublier
 END WHILE while1;

 SELECT 'Après la boucle WHILE';
 END|
 DELIMITER ;

 CALL test_leave2(8);

'Après la boucle WHILE' ne s’affiche plus lorsque l’instruction LEAVE est déclenchée, puisque
l’on quitte la procédure stockée avant d’arriver à l’instruction SELECT qui suit la boucle WHILE.

En revanche, LEAVE ne permet pas de quitter directement une structure conditionnelle (IF
ou CASE). Il n’est d’ailleurs pas non plus possible de donner un label à ces structures. Cette
restriction est cependant aisément contournable en utilisant les blocs d’instructions.

Exemple : la procédure suivante affiche les nombres de 4 à 1, en précisant s’ils sont pairs. Sauf
pour le nombre 2, pour lequel une instruction LEAVE empêche l’affichage habituel.

 DELIMITER |
 CREATE PROCEDURE test_leave3()
 BEGIN
 DECLARE v_i INT DEFAULT 4;

 WHILE v_i > 0 DO

 IF v_i%2 = 0 THEN
 if_pair: BEGIN
 IF v_i = 2 THEN -- Si v_i vaut 2
 LEAVE if_pair; -- On quitte le

bloc "if_pair", ce qui revient à quitter la
structure IF v_i%2 = 0

 END IF;
 SELECT CONCAT(v_i, ' est pair') AS message;
 END if_pair;
 ELSE
 if_impair: BEGIN
 SELECT CONCAT(v_i, ' est impair') AS message;

403

V. Sécuriser et automatiser ses actions

 END if_impair;
 END IF;

 SET v_i = v_i - 1;
 END WHILE;
 END|
 DELIMITER ;

 CALL test_leave3();

message

4 est pair

message

3 est impair

message

1 est impair

'2 est pair' n’est pas affiché, puisqu’on a quitté le IF avant cet affichage.

V.5.3.4.2. ITERATE : déclencher une nouvelle itération de la boucle

Cette instruction ne peut être utilisée que dans une boucle. Lorsqu’elle est exécutée, une
nouvelle itération de la boucle commence. Toutes les instructions suivant ITERATE dans
la boucle sont ignorées.

Exemple : la procédure suivante affiche les nombres de 1 à 3, avec un message avant le IF et
après le IF. Sauf pour le nombre 2, qui relance une itération de la boucle dans le IF.

 DELIMITER |
 CREATE PROCEDURE test_iterate()
 BEGIN
 DECLARE v_i INT DEFAULT 0;

 boucle_while: WHILE v_i < 3 DO
 SET v_i = v_i + 1;
 SELECT v_i, 'Avant IF' AS message;

 IF v_i = 2 THEN
 ITERATE boucle_while;

404

V. Sécuriser et automatiser ses actions

 END IF;

 SELECT v_i, 'Après IF' AS message; -- Ne sera pas exécuté

pour v_i = 2
 END WHILE;
 END |
 DELIMITER ;

 CALL test_iterate();

v_i message

1 Avant IF

v_i message

1 Après IF

v_i message

2 Avant IF

v_i message

3 Avant IF

v_i message

3 Après IF

!
Attention à ne pas faire de boucle infinie avec ITERATE, on oublie facilement que cette
instruction empêche l’exécution de toutes les instructions qui la suivent dans la boucle. Si
j’avais mis par exemple SET v_i = v_i + 1; après ITERATE et non avant, la boucle serait
restée coincée à v_i = 2.

V.5.3.5. La boucle LOOP

On a gardé la boucle LOOP pour la fin, parce qu’elle est un peu particulière. En effet, voici sa
syntaxe :

405

V. Sécuriser et automatiser ses actions

 [label:] LOOP
 instructions
 END LOOP [label]

Vous voyez bien : il n’est question de condition nulle part. En fait, une boucle LOOP doit intégrer
dans ses instructions un élément qui va la faire s’arrêter : typiquement une instruction LEAVE.
Sinon, c’est une boucle infinie.

Exemple : à nouveau une procédure qui affiche les nombres entiers de 1 à p_nombre.

 DELIMITER |
 CREATE PROCEDURE compter_jusque_loop(IN p_nombre INT)
 BEGIN
 DECLARE v_i INT DEFAULT 1;

 boucle_loop: LOOP
 SELECT v_i AS nombre;

 SET v_i = v_i + 1;

 IF v_i > p_nombre THEN
 LEAVE boucle_loop;
 END IF;
 END LOOP;
 END |
 DELIMITER ;

 CALL compter_jusque_loop(3);

V.5.3.6. En résumé
— Un bloc d’instructions est délimité par BEGIN et END. Il est possible d’imbriquer plusieurs

blocs d’instructions.
— Une variable locale est définie dans un bloc d’instructions grâce à la commande DECLARE.

Une fois la fin du bloc d’instructions atteinte, toutes les variables locales qui y ont été
déclarées sont supprimées.

— Une structure conditionnelle permet d’exécuter une série d’instructions si une condition
est respectée. Les deux structures conditionnelles de MySQL sont IF et CASE.

— Une boucle est une structure qui permet de répéter une série d’instructions un certain
nombre de fois. Il existe trois types de boucle pour MySQL : WHILE, REPEAT et LOOP.

— L’instruction LEAVE permet de quitter un bloc d’instructions ou une boucle.
— L’instruction ITERATE permet de relancer une itération d’une boucle.

406

	V Sécuriser et automatiser ses actions
	V.4 Procédures stockées
	V.4.1 Création et utilisation d'une procédure
	V.4.1.1 Procédure avec une seule requête
	V.4.1.2 Procédure avec un bloc d'instructions
	V.4.1.3 Délimiteur
	V.4.1.4 Création d'une procédure stockée
	V.4.1.5 Utilisation d'une procédure stockée

	V.4.2 Les paramètres d'une procédure stockée
	V.4.2.1 Sens des paramètres
	V.4.2.2 Syntaxe
	V.4.2.3 Exemples

	V.4.3 Suppression d'une procédure
	V.4.4 Avantages, inconvénients et usage des procédures stockées
	V.4.4.1 Avantages
	V.4.4.2 Inconvénients
	V.4.4.3 Conclusion et usage
	V.4.4.4 En résumé

	Contenu masqué

	V.5 Structurer ses instructions
	V.5.1 Blocs d'instructions et variables locales
	V.5.1.1 Blocs d'instructions
	V.5.1.2 Variables locales

	V.5.2 Structures conditionnelles
	V.5.2.1 La structure IF
	V.5.2.2 La structure CASE
	V.5.2.3 Utiliser une structure conditionnelle directement dans une requête

	V.5.3 Boucles
	V.5.3.1 La boucle WHILE
	V.5.3.2 La boucle REPEAT
	V.5.3.3 Donner un label à une boucle
	V.5.3.4 Les instructions LEAVE et ITERATE
	V.5.3.5 La boucle LOOP
	V.5.3.6 En résumé

