. 4

docker

Lecoeuvre Aymeric | Ricou Ewen 2018

AUTEURS

Contributeur Courriel

LECOEUVRE Aymeric Lecoeuvrepro@gmail.com
RICOU Ewen Ewen.ricou2015@gmail.com

MISES A JOUR

Version § Commentaires

V1.0 Version initiale

Exercices sur Docker 2018 2/31

DOCUMENTS ANNEXES

TERMINOLOGIE

Ce sigle signale une remarque importante dont il faut tenir compte.

I Ce sigle signale une note, un exemple.

Les images utilisées sont libres de droit et issues des sites Microsoft Office® et OpenClipart.org.

Exercices sur Docker 2018 3/31

1.

2.

6.

PRESENTATION DOCKER

EXERCICE 1

2.1. PREMIER CONTENEUR

2.2 CONTENEUR LINUX ALPINE

2.2.1. Docker Container Run

2.3. ISOLATION D’UN CONTENEUR

2.4, TERMINOLOGIE

EXERCICE 2

3.1. CREATION D’IMAGE A PARTIR D’UN CONTENEUR

3.2. CREATION D’IMAGE A L’AIDE D’UN FICHIER DOCKER

3.3. COUCHES D’'IMAGE

3.4. INSPECTION D’IMAGE

3.5. TERMINOLOGIE

EXERCICE 3

4.1. INITIALISEZ VOTRE ESSAIM

4.2. AFFICHER LES MEMBRES DE L'ESSAIM

4.3. DEPLOYER UNE PILE

4.4. MISE A L'ECHELLE D’UNE APPLICATION

4.5. CONCLUSION

EXERCICE 4

5.1. INTRODUCTION AUX PERMISSIONS

5.2. COMMENCEMENT

5.3. TEST DES PERMISSIONS DE DOCKER

5.4. CONCLUSION

EXERCICE 5

o o0 OO O

10
12

14
14
17
19
21
22

23
23
24
24
27
27

28
28
28
29
30

31

Lecoeuvre Aymeric | Ricou Ewen 2018

1. PRESENTATION DOCKER

Docker est un logiciel libre qui automatise le déploiement d'applications dans des conteneurs logiciels, Docker est
un outil qui peut empaqueter une application et ses dépendances dans un conteneur isolé, qui pourra étre exécuté

sur n'importe quel serveur.

Docker étend le format de conteneur Linux standard, LXC, avec une API de haut niveau fournissant une solution
de virtualisation qui exécute les processus de fagon isolée. Docker utilise LXC, cgroups, et le noyau Linux lui-
méme. Contrairement aux machines virtuelles traditionnelles, un conteneur Docker n'inclut pas de systéeme
d'exploitation, s'appuyant sur les fonctionnalités du systeme d’exploitation fournies par l'infrastructure sous-

jacente.

-#doc ker

Développaur

Premiére waralon

Dernilérs warslon

Werslon avancée

Etat du projst

Ecrit an

Environnement

Type

disfribution

Poiifigus da

Docker, Inc. (en)”

13 mars 2013

18.04.0 (10 avril 2018}
17.04.0 (6 avril 201734+
En développement actif
Go#

Multi-plateforme

Gestionnaire de conteneurs

Gratuit

Apache-2 [° et licence propriétaire
&

www. docker. com [archive]

Sources : Wikipédia

https://fr.wikipedia.org/wiki/Logiciel_libre
https://fr.wikipedia.org/wiki/LXC
https://fr.wikipedia.org/wiki/Interface_de_programmation
https://fr.wikipedia.org/wiki/Cgroups
https://fr.wikipedia.org/wiki/Noyau_Linux

2.1. PREMIER CONTENEUR

Dans cet exercice on va apprendre a exécuter un conteneur, gratuit et léger, et explorer les bases du fonctionnement
des conteneurs, on va voir aussi comment Docker exécute et isole les conteneurs les uns des autres.

Concepts de cet exercice :

e Moteur Docker

e (Conteneurs et images

e Registres d’'images et Docker Store
e Isolement du conteneur

Notre premier conteneur va étre le conteneur Hello World. Pour I'exécuter il faut faire :

Ce conteneur va nous dire ce qu’il s’est passé quand on I'exécute :

Hello from Docker!

his message shows that your installation appears to be working correctly.

generate this message, Docker took the following steps:

The Docker client contacted the Docker daemon.

The Docker daemon pulled the "hello—world" image from the Docker Hub.
{amd64)

The Docker daemon created a new container from that image which run=s the
executable that produces the output you are currently reading.

The Docker daemon streamed that output to the Docker client, which =ent it

to your terminal.

o try something more ambitious, you can run an Ubuntu container with:

5 docker run —-it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

https://cloud.docker.com/

or more examples and ideas, visit:

http=://docs.docker.com/engine/uzerguide/

En premier Docker contacte le programme docker exécuté en arriere-plan, ensuite le programme docker a été
chercher I'image intitulé hello-world sur le hub docker, puis il a créé un conteneur depuis cette image et nous a
envoyé ce message. Avant ce message docker n’a pas pu trouver I'image localement du coup il a demandé au
programme docker :

Pull complete

97cecfadbecdc7

Voici un schéma d’explication de ce qu’il s’est passé :
Hello World: What Happened?

https://store.docker.com

e
Repository: library /
Image: hello-world

Tag: latest

hello-werld:latest

$ docker run hello-world
Unable to find image locally
: Pulling from

Status: Downloaded newer image for

Hello from Docker!

play-with-docker.com

En premier il ne trouve pas I'image localement, ensuite il demande au hub docker s’il le connait, ensuite docker crée
le conteneur associé a I'image trouvé sur le hub docker.

2.2. CONTENEUR LINUX ALPINE

Pour le reste de I'exercice on va pouvoir exécuter un conteneur linux Alpine est une distribution Linux légere, elle est
donc rapide a « pulled » (récupérer).

Pour commencer exécutez cette commande :

docker image pull alpine

La commande pull récupere I'image alpine sur le registre Docker et I’enregistre dans notre systeme. Dans le cas présent
le registre docker est le HUB docker.

On peut utiliser la commande docker image pour voir la liste des images sur notre systéme

docker image Is

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
alpine latest c51186c28340 4 weeks ago 1.109 MB
hello-world latest 690ed74de00of 5 months ago 960 B
2.2.1. Docker Container Run

Nous pouvons dés a présent lancer un conteneur docker basé sur cette image. Pour ce faire, il faut utiliser la
commande :

Docker container run alpine Is -

total 48

drwxr-xr-x 2 root root 4096 Mar 2 16:20 bin

drwxr-xr-x 5 root root 360 Mar 18 09:47 dev

drwxr-xr-x 13 root root 4096 Mar 18 09:47 etc

drwxr-xr-x 2 root root 4096 Mar 2 16:20 home
drwxr-xr-x 5 root root 4096 Mar 2 16:20 lib

Lorsqu’on appelle run, le client Docker trouve I'image, crée le conteneur, puis exécute une commande dans ce
conteneur. Lorsqu’on exécute la commande docker container run alpine Is -I. Docker exécute la commande Is -l dans
le systéme alpine. Une fois la commande Is faite, le conteneur s’arréte.

docker run Details

Q Run the z2lpme contaimerza nd send 8 alpme launcheszand runs 1s -1 o
1s -1

[I l Alpine

container

Docker Engine Docker Engine El Docker Engine

sEE = BEE = BaE =

drWxr—xr—x

L= = = = =

Comme je I'ai expliqué on exécute le conteneur alpine est un envoi la commande Is -I, puis le conteneur s’éteint et
nous revois la réponse de la commande.

Essayez de rentrer la commande qui suit :

docker container run alpine echo "hello from alpine"

On obtient alors ceci :

hello from alpine

Dans ce cas, le client Docker a consciencieusement exécuté la commande echo dans notre conteneur alpine, et ’a arrété.
Tout cela se fais trés rapidement, c’est la grande différence avec une machine virtuelle, si on devait faire ¢a avec une
machine virtuelle il faudrait démarrer I'OS, puis lancer I'application, et entrer la commande, il faudrait en gros 1 a 2
minutes pour avoir la réponse du echo. Les conteneurs docker fonctionnent au niveau de la couche application, de sorte

qu’ils ignorent la plupart des étapes requises par les machines virtuelles et n’exécutent que ce qui est requis.

Essayez une autre commande :

Docker container run alpine /bin/sh

Aprés cette commande il n’a dit rien se passé a premiére vue, en vérité c’est comme si vous avez démarré une 3¢
instance du conteneur alpine et exécuté la commande /bin/sh et qu’il s’est fermé. Il a donc simplement lancé le shell,
quitté le shell et arrété le conteneur. Docker a une fonctionnalité pour pouvoir rester dans le conteneur sans le fermer
ce « flag » c’est : -it.

Par exemple tapez ce qui suit :

Docker container run -it alpine /bin/sh

Normalement vous étes a I'intérieur du conteneur exécutant un shell linux, c’est comme si vous avez démarrée une
machine virtuelle mais avec juste le shell. Pour quitter le shell faites : EXIT

Lecoeuvre Aymeric | Ricou Ewen 2018

Pour voir les conteneurs en cours d’exécution on peut faire la commande :

Docker container Is

Comme aucun conteneur n’est en cours d’exécution, la réponse est une ligne vide. Essayons maintenant une variante
plus utile :

Docker container Is -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

36171a5da744 alpine "/bin/sh" 5 minutes ago Exited (©0)
2 minutes ago fervent_newton

a6agd4edeob2f alpine "echo 'hello from alp" 6 minutes ago Exited (©0)
6 minutes ago lonely_kilby

ff0a5c3750b9 alpine "ls -1" 8 minutes ago Exited (@)
8 minutes ago elated_ramanujan

c317d0a9%e3d2 hello-world "/hello" 34 seconds ago Exited (@)
12 minutes ago stupefied_mcclintock

Ce que vous voyez maintenant c’est une liste de tous les conteneurs que vous avez exécutés.

Il est logique de passer du temps a se familiariser avec les commandes docker run. Pour en savoir plus sur run utilisez
docker container run —help

2.3. ISOLATION D’UN CONTENEUR

Dans les étapes ci-dessus, nous avons exécuté plusieurs commandes via des instances de conteneur avec l'aide de docker
container run. La commande docker container Is -a nous a montré qu'il y avait plusieurs conteneurs listés. Pourquoi y
a-t-il autant de conteneurs s'ils proviennent tous de I'image alpine?

C'est un concept de sécurité essentiel dans le monde des conteneurs Docker ! Méme si chaque commande docker
container run utilisait la méme image alpine, chaque exécution est un conteneurséparé et isolé. Chaque conteneur
possede un systeme de fichiers distinct et s'exécute dans un espace de noms différent ; Par défaut, un conteneur n'a aucun
moyen d'interagir avec d'autres conteneurs, méme ceux provenant de la méme image. Essayons un autre exercice pour
en savoir plus sur l'isolement.

docker container run -it alpine /bin/ash

le /bin/ash est un autre type de shell disponible dans I'image alpine. Une fois que le conteneur est lancé et que vous étes
a l'intérieur de l'invite de commande du conteneur, tapez les commandes suivantes :

echo "hello world" > hello.txt

1s

La commande echo crée un fichier appelé « hello.txt » avec les mots « hello world » a I'intérieur. La deuxiéme vous donne
une liste des fichiers situé dans le répertoire et devrait afficher le fichier que vous avez créé. Sortez ensuite du conteneur
avec la commande exit.

Pour montrer comment fonctionne l'isolation, exécutez la commande suivante :

docker container run alpine 1ls

Cette commande envoie au conteneur alpine la commande Is, mais cette fois, le fichier que vous avez créé juste avant
n’est plus la, c’est I'isolement. Votre commande est exécutée dans une nouvelle instance distincte, méme si elle est
basée sur la méme image. La 2°™ instance n’a aucun moyen d’interagir avec la 1¥® car le moteur docker les maintient

séparés et nous n’avons pas configuré de parameétres supplémentaires qui permettraient a ces deux instances
d’interagir.

L'isolation permet aux utilisateurs de créer rapidement des copies de test isolées et séparées d'une application ou
d'un service et de les faire fonctionner cote a cote sans interférer les uns avec les autres.

Pour pouvoir revenir sur le conteneur qui contient le fichier « hello.txt » il faut récupérer le numéro associé a I'instance
du conteneur pour cela :

docker container 1ls -a

la commande devrait sortir ¢a :

Lecoeuvre Aymeric | Ricou Ewen 2018

CONTAINER ID
PORTS

36171a5da744
2 minutes ago

3030c9c91el2
2 minutes ago

abagd4edeb2f
6 minutes ago

ff0a5c3750b9
8 minutes ago

c317d0a9%e3d2
12 minutes ago

IMAGE

NAMES

alpine

alpine

alpine

alpine

hello-world

COMMAND

Illsll
distracted_bhaskara

"/bin/ash"
fervent_newton

"echo 'hello from alp
lonely_kilby

ll].S _1“
elated_ramanujan

"/hello"
stupefied_mcclintock

CREATED

2 minutes ago

5 minutes ago

6 minutes ago

8 minutes ago

34 seconds ago

STATUS

Exited (@)

Exited (0)

Exited (©0)

Exited (©0)

Exited (©0)

Docker Container Isolation

Container
Instances

Images

Exited (0) ¢ alp

alpine

Exited (0)

e
hello.tt

alpine

Exited (0)

: alpine

Exited (0)

| lhello-world!

hello-world

Le conteneur dans lequel nous avons créé le fichier "hello.txt" est le méme que celui dans lequel nous avons utilisé le

shell /bin/ash, que nous pouvons voir dans la colonne ‘COMMAND’. Nous pouvons aussi voir un numéro d’identifiant

du conteneur c’est avec ¢a qu’on va pouvoir retourner sur I'instance souhaité. Pour cela essayez de taper :

docker container start <container ID>

Il est possible d’utiliser qu’on petit bout de I'ID pour faire fonctionner la commande par exemple les 4 premiers

caracteres.

2.4. TERMINOLOGIE

Dans la derniére section, vous avez vu beaucoup de jargon spécifique a Docker qui pourrait étre déroutant pour
certains. Alors avant d'aller plus loin, clarifions une terminologie fréquemment utilisée dans 1'écosysteme Docker.

e [mages- Le systéeme de fichiers et la configuration de notre application qui sont utilisés pour créer des
conteneurs. Pour en savoir plus sur une image Docker, exécutez docker image inspect alpine. Dans la démo ci-
dessus, vous avez utilisé la commande docker image pull pour le télécharger I'image alpine. Lorsque vous avez

Lecoeuvre Aymeric | Ricou Ewen 2018

exécuté la commande docker container run hello-world, elle a également fait un tour docker image pull en
coulisses pour télécharger I'image hello-world.

e Conteneurs - Exécution d'instances d'images Docker - les conteneurs exécutent les applications réelles. Un
conteneur inclut une application et toutes ses dépendances. Il partage le noyau avec d'autres conteneurs et
s'exécute comme un processus isolé dans l'espace utilisateur du systéme d'exploitation hote. Vous avez créé un
conteneur en docker run utilisant I'image alpine que vous avez téléchargée. Une liste des conteneurs en cours
d'exécution peut étre consultée a l'aide de la commande docker container Is.

e Docker daemon - Service d'arriere-plan s'exécutant sur I'h6te qui gere la construction, 'exécution et la
distribution des conteneurs Docker.

e Client Docker - L'outil de ligne de commande qui permet a l'utilisateur d'interagir avec le démon Docker.

e Docker Store - est, entre autres, un registre d'images Docker. Vous pouvez considérer le registre comme un
répertoire de toutes les images Docker disponibles. Vous l'utiliserez plus tard dans ce tutoriel.

Exercices sur Docker 2018 13 /31

https://store.docker.com/

Dans cet exercice on va apprendre a créer une image a partir d’'un conteneur, a créer une image a I'aide d’un fichier
docker, on va voir ce qu’est la couche d’images ainsi que les inspections d’'images.

Nous allons commencer par la forme la plus simple de création d’image, dans laquelle nous avons simplement une de
nos instances en tant qu’image.

Nous verrons ensuite comment obtenir les détails d'une image a travers l'inspection et explorer le systéme de fichiers

pour avoir une meilleure compréhension de ce qui se passe derriére

3.1. CREATION D'IMAGE A PARTIR D'UN CONTENEUR

Commencons alors par ouvrir un shell a partir d'un conteneur ubuntu :

Docker container run -ti ubuntu bash

Comme vous le savez, nous avons avec cette commande été chercher I'image appelé ubuntu depuis le docker store et on
a ouvert un shell dans ce conteneur.

Pour customiser un petit peu les choses on va installer un paquet appelé figlet dans ce conteneur. Pour cela tapez les
commandes suivantes :

Apt-get update
Apt-get install -y figlet
Figlet “Hello Docker”

Vous devriez voir les mots « hello docker » imprimés en gros caractéres sur I'écran.

Maintenant sortez de ce conteneur :

exit

Supposons maintenant que cette nouvelle application est trés utile et que vous voulez la partager avec le reste de
votre équipe. Vous pourriez leur dire de faire exactement ce que vous avez fait ci-dessus et installer figlet dans leur
propre conteneur, mais s’il s’agissait d’une application du monde réel ou vous venez d’installer plusieurs paquets et
de passer par plein d’étapes de configuration, le processus peut devenir long et sujet a de nombreuses erreurs. Au lieu
de cela, il serait plus simple de créer une image que vous pouvez partager.

Pour commencer, nous devons obtenir I'ID de ce conteneur en utilisant la commande Is (ne pas oublier I'option -3,
sinon il va juste vous afficher les conteneurs en route, pas ceux qui sont finis).

Docker container Is -a

Avant de créer notre propre image, nous pourrions vouloir inspecter tous les changements que nous avons faits.
Essayez de taper la commande docker container diff <container ID> pour le conteneur que vous venez de créer. Vous
devriez voir une liste de tous les fichiers qui ont été ajoutés ou modifiés dans le conteneur lorsque vous avez installé

figlet. Docker garde une trace de toutes ces informations pour nous. Cela fait partie du concept de couche qu’on verra
plus tard.

Maintenant, pour créer une image, nous devons « valider » ce conteneur. Pour cela il faut utiliser I'option commit qui
va créer une image localement sur le systeme exécutant le moteur docker. Exécutez la commande suivante, en utilisant
I'ID du conteneur ubuntu, afin de valider le conteneur et créer une image a partir de celui-ci.

Docker container commit <container id>

C’est tout, vous avez créé votre premiére image ! Une fois qu’elle a été créée, nous pouvons voir I'image dans la liste
des images disponibles

Docker image Is

Vous devriez voir quelque chose comme ceci :

REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> a104f9ae9c37 46 secondsago 160MB
ubuntu latest 14f60031763d 4 days ago 120MB

Notez que I'image que nous avons pris du store docker dans la premiére étape (ubuntu) est listée ici avec notre propre
image personnalisée. Sauf que notre image personnalisée n’a aucune information dans les colonnes REPOSITORY ou
TAG, ce qui rendrait difficile d’identifier exactement ce qui se trouvait dans ce conteneur si nous voulions le partager

L'ajout de cette information a une image est connu comme le marquage d’une image. A partir de la commande
précédente, récupérez I'ID de I'image nouvellement créée et marquez-la pour qu’elle s’appelle ourfiglet :

Docker image tag <image_id> ourfiglet

Docker image Is

Maintenant nous avons le nom plus convivial « ourfiglet » que nous pouvons utiliser pour identifier notre image.

REPOSITORY TAG IMAGE ID CREATED SIZE
ourfiglet latest a104f9ae9c37 5 minutesago 160MB

ubuntu latest 14f60031763d 4 days ago 120MB

Lecoeuvre Aymeric | Ricou Ewen 2018

Voici une vue graphique de ce qu’on a fait :

Image Creation: Instance Promotion

i exit (stop) container &
ubuntu : ubuntu

apt-get figlet e, |
fi Figlet ¥

commmittontainer
tsgourfiglet
Docker Engine
ubuniu Linune ourfiglet

rumubuntu container
sot-geminstall) figlet

Maintenant, nous allons exécuter un conteneur basé sur I'image ourfigletr nouvellement créée :

Docker container run ourfiglet figlet hello

Comme le paquet figlet est présent dans notre image ourfiglet, la commande renvoie la sortie suivante :

0
' N
_S } I
S Y N
Cet exemple montre que nous pouvons créer un conteneur, y ajouter toutes les bibliotheques et les applications qu’on
souhaite, et il suffit de le valider pour créer une image. Nous pouvons ensuite utiliser cette image comme nous le
ferions pour les images tirées du Docker Store. Nous avons encore un léger probleme parce que notre image est
stockée uniquement localement. Pour partager I'image, nous voulons pousser I'image vers un registre quelque part.

Comme mentionné ci-dessus, cette approche consistant a installer manuellement un logiciel dans un conteneur puis
a l'appliquer a une image personnalisée n'est qu'une facon de créer une image. Cela fonctionne bien et est assez
commun. Cependant, il existe un moyen plus puissant de créer des images. Dans le chapitre suivant, nous verrons
comment les images sont créées en utilisant un Dockerfile, qui est un fichier texte contenant toutes les instructions
pour construire une image.

Lecoeuvre Aymeric | Ricou Ewen 2018

3.2. CREATION D'IMAGE A L’AIDE D’UN FICHIER DOCKER

Au lieu de créer une image binaire statique, nous pouvons utiliser un fichier appelé Dockerfile pour créer une image. Le
résultat final est essentiellement le méme, mais avec un Dockerfile nous fournissons les instructions pour construire
I'image, plutét que seulement les fichiers binaires bruts. C'est utile car il devient beaucoup plus facile de gérer les
changements, d'autant plus que vos images deviennent plus grandes et plus complexes.

Par exemple, si une nouvelle version de figlet est publiée, nous devrons soit recréer notre image a partir de rien, soit
lancer notre image et mettre a jour la version installée de figlet. En revanche, un Dockerfile inclurait les commandes
apt-get que nous avons utilisées pour installer figlet afin que nous - ou quiconque utilisant le Dockerfile - puissions
simplement recomposer l'image en utilisant ces instructions.

En pratique, les Dockerfiles peuvent étre gérés de la méme maniére que vous pouvez gérer un code source : ce sont
simplement des fichiers texte, donc presque n'importe quel systeme de contrdle de version peut étre utilisé pour gérer
Dockerfiles au fil du temps.

Nous allons utiliser un exemple simple dans cette section et construire une application "hello world" dans Node.js. (Pas
besoin d’étre familier avec Node.js pour comprendre comment ¢a fonctionne.)

Nous commencerons par créer un fichier dans lequel nous récupérerons le nom d’héte et lafficherons.

Tapez le contenu suivant dans un fichier nommé index.js. Vous pouvez utiliser vi, vim ou plusieurs autre éditeurs linux
dans cet exercice.

var os = require("os");

var hostname = os.hostname();

console.log("hello from " + hostname);

Le fichier que nous venons de créer est le code javascript pour notre serveur. Comme vous pouvez probablement le
devenir, Node.js affichera simplement un message « hello ». Nous allons utiliser alpine comme image de base du systéme
d’exploitation, ajouter un runtime node.js, puis copier notre code source dans le conteneur.

Nous spécifierons également la commande par défaut a exécuter lors de la création du conteneur.

Créez un fichier nommé Dockerfile et copiez le contenu suivant dans celui-ci.

FROM alpine
RUN apk update && apk add nodejs
COPY . /app
WORKDIR /app

CMD ["node","index.js"]

Construisons notre premiere image avec ce Dockerfile et nommez-le hello: v0.7:

docker image build -t hello:ve.1

Voila une image qui récapitule ce que vous avez fait :
Dockerfiles

Dockerfile: rrom a1pine

RUN apk update && apk add nodejs
CoPY . Jfapp

WORKDIR fapp

CMD ["node”,"index.js"]

WORKDIR /app
FROM alpine RUN apk COPY . /app CMD "node" "index.js"

apk update host/index.js --» % od fapp

*_

apk add nodejs container/app % node index.js

alpine

Ensuite démarrez un conteneur pour vérifier que nos applications s’exécutent correctement :

Docker container run hello :v0.1

Vous devriez alors avoir une sortie similaire a la suivante (I'id sera différent pour vous):

hello from 92d79b6de29f

Qu'est-ce qui vient de se passer ? Nous avons créé deux fichiers : notre code d'application (index.js) est un simple
code javascript qui imprime un message. Et le Dockerfile est les instructions pour le moteur Docker pour créer notre

conteneur personnalisé. Ce Dockerfile fait ce qui suit :

1. Spécifie une image de base a tirer depuis I'image alpine que nous avons utilisée dans les labos précédents.
2. Ensuite, il exécute deux commandes (apk update et apk add) a l'intérieur de ce conteneur qui installe le

serveur Node.js.

Lecoeuvre Aymeric | Ricou Ewen 2018

3. Ensuite, nous lui avons dit de copier les fichiers de notre répertoire de travail dans le conteneur. Le seul
fichier que nous avons en ce moment est notre index.js.

4. Ensuite, nous spécifions WORKDIR - le répertoire que le conteneur doit utiliser lorsqu'il démarre

5. Enfin, nous avons donné a notre conteneur une commande (CMD) a exécuter lorsque le conteneur démarre.

3.3. COUCHES D'IMAGE

Il'y a autre chose d'intéressant dans les images que nous construisons avec Docker. En cours d'exécution, ils semblent
étre un systeme d'exploitation unique et une application. Mais les images elles-mémes sont en réalité construites
en couches. Sivous revenez en arriere et regardez la sortie de votre commande docker image build, vous remarquerez
qu'il y avait 5 étapes et chaque étape avait plusieurs taches.

Les couches sont un concept important. Pour explorer cela, nous allons passer par un autre ensemble d'exercices.

Tout d'abord, vérifiez I'image que vous avez créée précédemment en utilisant la commande history :

Docker image history <image id>

Ce que vous voyez est la liste des images de conteneur intermédiaires qui ont été construites en méme temps que la
création de votre image finale de I'application Node.js. Certaines de ces images intermédiaires deviendront
des couches dans votre image finale du conteneur.

Dans la sortie de la commande history, les calques Alpine d'origine sont en bas de la liste, puis chaque personnalisation
gue nous avons ajoutée dans notre Dockerfile est son propre pas dans la sortie. C'est un concept puissant car cela
signifie que si nous devons apporter une modification a notre application, cela ne peut affecter qu'une seule couche
I Pour voir cela, nous allons modifier un peu notre application et créer une nouvelle image.

Tapez le texte suivant dans votre fenétre de console :

echo "console.log(\"this is v@.2\");" >> index.js

Cela ajoutera une nouvelle ligne au bas de votre fichier index.js. Maintenant, nous allons construire une nouvelle
image en utilisant notre code mis a jour. Nous allons également marquer notre nouvelle image pour la marquer comme
une nouvelle version afin que toute personne consommant nos images plus tard peut identifier la bonne version a
utiliser :

docker image build -t hello:ve.2

Lecoeuvre Aymeric | Ricou Ewen 2018

Vous devriez voir une sortie similaire a ceci :

Sending build context to Docker daemon 86.15MB
Step 1/5 : FROM alpine
---> 7328f6f8b418
Step 2/5 : RUN apk update && apk add nodejs
---> Using cache
---> 2707762fca63
Step 3/5 : COPY . /app
---> 07b2e2127db4
Removing intermediate container 84eb9c3132ed
Step 4/5 : WORKDIR /app
---> 6630eb76312c
Removing intermediate container ee6c9e7a5337
Step 5/5 : CMD node index.js
---> Running in e@79fb6000a3
---> e536b9dadd2f
Removing intermediate container e079fb6000a3
Successfully built e536b9dadd2f

Successfully tagged hello:ve.2

Exercices sur Docker 2018 20/31

Lecoeuvre Aymeric | Ricou Ewen 2018

3.4. INSPECTION D’IMAGE

Maintenant, nous allons voir I'inspection d’image, I'inspection d’image peut étre pratique dans des cas ol on souhaite
savoir le contenu du conteneur ainsi que ces details, les commandes qu’il peut exécuter, le systéme d’exploitation et
plus encore.

L'image alpine doit déja étre présente localement sinon, exécutez la commande suivante :

docker image pull alpine

Une fois que nous sommes slrs qu'’il est |a, inspectons-le

Docker image inspect alpine

Il'y a beaucoup d’informations la-dedans :

e Les couches de 1'image est composée de

e Le pilote utilisé pour stocker les calques

e L’architecture / le systeme d'exploitation pour lequel il a été créé
e Meétadonnées de 'image

Nous n'entrerons pas dans tous les détails ici mais nous pouvons utiliser des filtres pour inspecter des détails
particuliers sur I'image. Vous avez peut-étre remarqué que les informations sur I'image sont au format JSON. Nous
pouvons en profiter pour utiliser la commande inspect avec quelques informations de filtrage pour obtenir des
données spécifiques de I'image.

Obtenons la liste des calques :

docker image inspect --format "{{ json .RootFS.Layers }}" alpine

Alpine est juste une petite image de base de I'0OS donc il n'y a qu'une seule couche :

["sha256:60ab55d3379d47c1babbh6225d59d10e1f52096ee9d5c816e42c635ccc57a5a2b"]

Nouveau regardons notre image Hello personnalisée. Vous aurez besoin de I'identifiant de l'image :

docker image inspect --format "{{ json .RootFS.Layers }}" <image ID>

Notre image est un peu plus intéressante :

Lecoeuvre Aymeric | Ricou Ewen 2018

["sha256:5bef08742407efd622d243692b79bak055383bbcel2900324175e561589aedb@", "sha256:5ac283aaea74
2f843c869d28bbeaf5000c08685b5f7ba01431094a207b8aldf9", "sha256:2ecb254be@603a2c76880be45a5c2b028
£6208714aec770d49c9eff4cbc3cf25"]

Nous avons trois couches dans notre application.

3.5. TERMINOLOGIE

e Calgues - Une image Docker est construite a partir d'une série de calques. Chaque couche représente une
instruction dans le fichier Docker de I'image. Chaque couche sauf la derniére est en lecture seule.

e Dockerfile - Un fichier texte qui contient toutes les commandes, dans |'ordre, nécessaires pour construire
une image donnée. La page de référence Dockerfile répertorie les différentes commandes et les détails de
format pour Dockerfiles.

e Volumes - Une couche de conteneur Docker spéciale qui permet aux données de persister et d'étre
partagées séparément du conteneur lui-méme. Considérez les volumes comme un moyen d'abstraire et de
gérer vos données persistantes séparément de I'application elle-méme.

Exercices sur Docker 2018 22 /31

https://docs.docker.com/engine/reference/builder

Jusqu'a présent, nous avons exploré |'utilisation d'instances uniques de conteneurs s'exécutant sur
un seul héte, un peu comme un développeur peut le faire en travaillant sur une seule application
de service ou comme un administrateur informatique peut le faire sur un banc d'essai. Les
applications de production sont généralement beaucoup plus complexes et ce modele de serveur
unique ne fonctionnera pas pour coordonner 10 ou 100 conteneurs et les connexions réseau entre
eux, sans parler de la nécessité d'assurer la disponibilité et la capacité de mise a I'échelle.

Pour les applications réelles, les utilisateurs informatiques et les équipes d'applications ont besoin
d'outils plus sophistiqués. Docker fournit deux de ces outils: Docker Compose et Docker Swarm
Mode . Les deux outils ont quelques similitudes mais quelques différences importantes:

Compose est utilisé pour controler plusieurs conteneurs sur un seul systeme. Tout comme

le Dockerfile que nous avons examiné pour construire une image, il y a un fichier texte qui décrit
I'application : quelles images utiliser, combien d'instances, les connexions réseau, etc.

Mais Compose ne fonctionne que sur un seul systéme.

Docker Swarm indique a Docker que vous exécuterez de nombreux moteurs Docker et que vous
souhaitez coordonner les opérations entre eux. Le mode Swarm combine la possibilité de définir
non seulement I'architecture de I'application, comme Composer, mais aussi de définir et de
maintenir des niveaux de haute disponibilité, la mise a I'échelle, I'équilibrage de charge, etc. Avec
toutes ces fonctionnalités, le mode Swarm est plus souvent utilisé dans les environnements de
production que son cousin simpliste, Compose.

4.1. INITIALISEZ VOTRE ESSAIM

La premiere chose que nous devons faire est de dire a nos hétes Docker que nous voulons utiliser
le mode Docker Swarm. Les essaims peuvent étre simplement un seul nceud, mais cela est
inhabituel car vous ne disposez pas de capacités de haute disponibilité et vous limiteriez
séverement votre évolutivité. La plupart des essaims de production ont au moins trois nceuds

de gestion dans eux et de hombreux nceuds de travail. Trois gestionnaires est le minimum pour
avoir un véritable cluster a haute disponibilité avec quorum. Notez que les nceuds de gestionnaire
peuvent exécuter vos taches de conteneur de la méme maniére qu'un nceud de travail, mais cette
fonctionnalité peut également étre séparée afin que les gestionnaires n'effectuent que les taches
de gestion.

L'initialisation du mode Docker Swarm est facile. Dans votre premiere fenétre de terminal que vous utilisez entrez :

docker swarm init --advertise-addr $(hostname -i)

Lecoeuvre Aymeric | Ricou Ewen 2018

Vous devriez avoir ceci :

Swarm initialized: current node (tjocs7ul557phkmp6mkpjmu3f) is now a manager.
To add a worker to this swarm, run the following command:

Docker swarm join --token SWMTKN-1-3b33jjwsqgpkcy2c8og73aorjf2ao9sjmacrvbwg3xpdlomes459-
ckfdcxqqahb9gy9s2t9n5mi78 10.0.25.3:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

Dans la sortie de votre swarm init, on vous donne une commande au milieu qui ressemble a celle docker swarm join
-token SWMTKN-X-abcdef....que vous utilisez pour joindre des nceuds de travail a I'essaim. Vous recevez également
une deuxieme commande docker swarm join-token manager pour I'ajout de gestionnaires supplémentaires.

Nous allons ajouter un travailleur. Copiez la commande "docker swarm join ..." de la sortie de votre manager et
collez-la dans une 2eme fenétre d’un terminal.

Votre docker swarm devrait fonctionner maintenant, vous aurez donc un gestionnaire et un travailleur. Comme
indiqué ci-dessus, vous auriez presque toujours 3 noeuds de gestionnaire ou plus et plusieurs noeuds de travail afin
de maintenir la haute disponibilité et I'évolutivité, mais un de chaque est suffisant pour commencer.

4.2. AFFICHER LES MEMBRES DE L'ESSAIM

A partir de la premiére fenétre de terminal, vérifiez le nombre de nceuds dans I'essaim :

docker node Is

4.3. DEPLOYER UNE PILE

Une pile est un groupe de services déployés ensemble : plusieurs composants conteneurisés d’une applicaiton qui
s’exécutent dans des instances distinctes. Chaque service individuel peut en fait étre constitué d’un ou de plusieurs
conteneurs, appelés taches, puis toutes les taches et tous les services forment ensemble une pile.

Comme avec Dockerfiles et les fichiers Compose, le fichier qui définit une pile est un fichier texte brut facile a éditer
et a suivre. Dans notre exercice, il y a un fichier appelé docker-stack.yml dans le dossier en cours qui sera utilisé pour
déployer I'application de vote en tant que pile.

Entrez les informations suivantes pour étudier le fichier docker-stack.yml :

Cat docker-stack.yml

Ce fichier YAML définit I'ensemble de notre pile : I'architecture des services, le nombre d'instances, la maniére dont
tout est cablé, comment gérer les mises a jour de chaque service. C'est le code source de notre conception
d'application. Quelques éléments de note particuliere :

e Prés du haut du fichier, vous verrez la ligne "services :". Ce sont les composants d'application
individuels. Dans I'application de vote, nous avons redis, db, vote, résultat, travailleur et visualiser comme
nos services.
e Sous chaque service se trouvent des lignes qui spécifient comment ce service doit s’exécuter :
o Notez I'image familiere de terme des laboratoires plus tot ? Méme idée ici : c'est I'image du
conteneur a utiliser pour un service particulier.

Lecoeuvre Aymeric | Ricou Ewen 2018

o Les ports et les réseaux s'expliquent d'eux-mémes, bien qu'il soit utile de souligner que ces réseaux
et ports peuvent étre utilisés de maniére privée dans la pile ou qu'ils peuvent permettre une
communication externe vers et depuis une pile. 2

o Notez que certains services ont une réplique étiquetée en ligne : cela indique le nombre d'instances,
ou de taches, de ce service que les gestionnaires Swarm doivent démarrer lorsque la pile est mise en
place. Le moteur Docker est assez intelligent pour charger automatiquement I'équilibre entre
plusieurs réplicas en utilisant des équilibreurs de charge intégrés. (L'équilibreur de charge intégré
peut, bien sdr, étre remplacé par autre chose.)

Vérifiez que vous étes dans le terminal du gestionnaire [nodel] et procédez comme suit :

docker stack deploy --compose-file=docker-stack.yml voting_stack

Vous pouvez voir si la pile déployée depuis le terminal du gestionnaire [nodel]

docker stack Is

La sortie devrait étre la suivante. Il indique que les 6 services de la pile de I'application de vote (hommée
voting_stack) ont été déployés.

NAME SERVICES

voting_stack 6

Nous pouvons obtenir des détails sur chaque service dans la pile avec ce qui suit :

docker stack services voting_stack

La sortie devrait étre similaire a la suivante, bien que naturellement vos ID seront uniques :

Exercices sur Docker 2018 25/31

https://training.play-with-docker.com/ops-s1-swarm-intro/#fn-network

Lecoeuvre Aymeric | Ricou Ewen 2018

ID NAME MODE REPLICAS IMAGE

10rtlwczotze voting_stack_visualizer replicated 1/1 dockersample
s/visualizer:stable

8lgj31k3g5ek voting_stack_redis replicated 1/1 redis:alpine
nhb4igkkygdy voting_stack result replicated 1/1 dockersample
s/examplevotingapp_result:before

nv8d2z2ghlx4 voting_stack_db replicated 1/1 postgres:9.4
ou4d7zdyfécd0 voting_stack vote replicated 2/2 dockersample
s/examplevotingapp_vote:before

rpnxwmoipagqg voting_stack_worker replicated 1/1 dockersample

s/examplevotingapp_worker:latest

Si vous voyez qu'il y a O répliques, attendez quelques secondes et entrez a nouveau la commande. L'Essaim finira par
avoir toutes les répliques en cours d'exécution pour vous. Tout comme notre fichier docker-stack spécifié, il y a deux
répliques du service voting_stack_vote et une de chacune des autres.

Lister les taches du service de vote.

docker service ps voting_stack vote

Vous devriez obtenir une sortie comme la suivante ou les 2 taches (réplicas) du service sont listées.

ID NAME IMAGE

NODE DESIRED STATE CURRENT STATE ERROR PORTS

my7jagze7pgg voting stack vote.l dockersamples/examplevotingapp_vote:be
fore nodel Running Running 56 seconds ago

3jzgk39dyr6d voting_stack vote.2 dockersamples/examplevotingapp_vote:be

fore node2 Running Running 58 seconds ago

A partir de la colonne NODE, nous pouvons voir qu'une tiche est en cours d'exécution sur chaque nceud. Cette
application est dotée d'un VISUALIZER SWARM intégré pour vous montrer comment I'application est configurée et en
cours d'exécution. Vous pouvez également accéder a ' interface utilisateur Web frontale de I'application.

Le SWARM VISUALIZER vous donne la disposition physique de la pile, mais voici une interprétation logique de la facon
dont les piles, les services et les taches sont liés :

Swarm: Stacks, Services & T asks

Stack

Tasks
Group of interr elated
services & dependencies. Atomic unit of a service
Orchestr ated as a umt. and scheduling in
Production applications Docker. One contamer
are one stack, and instance per task.

sometime mor €.

.. S\I ‘T'\.-IC
voting_stack Service

y
y

4.4. MISE A L'ECHELLE D’UNE APPLICATION

A stack component,
including a container

image, number of
replicas (tasks), ports,
and update policy

result

Comment pouvons-nous dire a notre application d'ajouter plus de répliques de notre service de vote ? En production,
vous pouvez |'automatiser via les APl de Docker mais pour l'instant nous le ferons manuellement. Vous pouvez
également modifier le fichier docker-stack.yml et modifier les spécifications si vous souhaitez que la taille de I'échelle
soit plus permanente. Tapez ce qui suit sur le terminal [nodel] :

docker service scale voting_stack_vote=5

Vous devriez voir le nombre de répliques pour le service de vote augmenter a 5 et dans quelques secondes,
Swarm les fera toutes fonctionner.

4.5. CONCLUSION

L'utilisation de seulement quelques commandes vous permet de déployer une pile de services en utilisant Docker
Swarm Mode pour orchestrer la pile entiére, toutes conservées dans le format de fichier Docker Compose simple
et lisible par 'hnomme.

https://training.play-with-docker.com/
https://training.play-with-docker.com/
https://training.play-with-docker.com/

Cet exercice est un exercice sécurité sur les permissions, dans cet exercice vous apprendrez les bases des
fonctionnalités du noyau Linux. Vous apprendrez comment ils fonctionnent avec Docker, certaines commandes de
base pour les afficher et les gérer, ainsi que comment ajouter et supprimer des fonctionnalités dans de nouveaux
conteneurs.

5.1. INTRODUCTION AUX PERMISSIONS

Le noyau Linux est capable de décomposer les privileges de I'utilisateur root en unités distinctes appelées permissions.
Par exemple, la fonctionnalité CAP_CHOWN permet a l'utilisateur root d'apporter des modifications arbitraires aux
UID et aux GID des fichiers. La fonction CAP_DAC_OVERRIDE permet a l'utilisateur root de contourner les contréles
d'autorisation du noyau sur les opérations de lecture, d'écriture et d'exécution de fichiers. Presque toutes les
puissances spéciales associées a |'utilisateur root de Linux sont décomposées en permissions individuelles.

Cette répartition des privileges root en petite fonctionnalités vous permet de :

e Supprimez les permissions individuelles du compte root d’utilisateur, ce qui le rend moins puissant/dangereux.
e Ajoutez des priviléges aux utilisateurs non root a un niveau tres petit.

Les permissions s'appliquent aux fichiers et aux threads. Les capacités de fichiers permettent aux utilisateurs
d'exécuter des programmes avec des privileges plus élevés. Ceci est similaire a la facon dont le bit setuid
fonctionne. Les fonctionnalités Thread permettent de suivre |'état actuel des capacités des programmes en cours
d'exécution.

Docker impose certaines limitations qui rendent le travail avec des permissions beaucoup plus simple. Par
exemple, les permissions de fichiers sont stockées dans les attributs étendus d'un fichier et les attributs étendus
sont supprimés lorsque les images Docker sont créées. Cela signifie que vous n'aurez normalement pas trop a
vous soucier des permissions de fichiers dans les conteneurs.

5.2. COMMENCEMENT

Dans cette étape, vous apprendrez |'approche de base pour gérer les permissions avec docker. Vous apprendrez
également les commandes Docker utilisées pour gérer les fonctionnalités du compte racine d’un conteneur.

A partir de Docker vous avez 3 options de haut niveau pour utiliser les permissions :

e Exécutez des conteneurs en tant que root avec un grand nombre de fonctionnalités et essayez de gérer
manuellement les fonctionnalités de votre conteneur.

e Exécutez des conteneurs en tant que root avec des permissions limitées et ne jamais les modifiez dans un
conteneur

e Exécutez des conteneurs en tant qu’utilisateur non privilégié sans fonctionnalités.

L'option 2 est la plus réaliste, I'option 3 serait idéale mais pas réaliste et I'option 1 devrait étre évitée autant que
possible.

Dans les commandes suivantes, Scap sera utilisé pour indiquer une ou plusieurs permissions individuelles.

Lecoeuvre Aymeric | Ricou Ewen 2018

Pour supprimer des fonctionnalités du compte root d’'un conteneur :

docker run --rm -it --cap-drop SCAP alpine sh

Pour ajouter des fonctionnalités au compte root d’un conteneur :

docker run --rm -it --cap-add SCAP alpine sh

Pour supprimer toutes les fonctionnalités, puis ajouter explicitement des fonctionnalités individuelles au compte root
d’un conteneur :

docker run --rm -it --cap-drop ALL --cap-add SCAP alpine sh

Le noyau Linux préfixe toutes les constantes de permissions avec "CAP_".Par exemple, CAP_CHOWN,
CAP_NET_ADMIN, CAP_SETUID, CAP_SYSADMIN etc. Les constantes de permissions Docker ne sont pas préfixées avec
"CAP_" mais correspondent aux constantes du noyau.

5.3. TEST DES PERMISSIONS DE DOCKER

Dans cette étape, vous allez commencer divers nouveaux conteneurs. Chaque fois que vous utiliserez les commandes
apprises a |'étape précédente pour modifier les fonctionnalités associées au compte utilisé pour exécuter le conteneur.

Démarrer un nouveau conteneur et prouver que le compte root du conteneur peut changer la propriété des fichiers :

docker run --rm -it alpine chown nobody /

Si la commande ne donne aucun code de retour c’est normal c’est que I'opération a réussi. La commande fonctionne
par ce que le comportement par défaut est que les nouveaux conteneurs doivent étre démarrés avec un utilisateur
root. Cet utilisateur a la capacité CAP_CHOWN par défaut.

Démarrez un autre nouveau conteneur et supprimez toutes les fonctionnalités du compte racine des conteneurs
autres que CAP_CHOWN. N'oubliez pas que Docker n'utilise pas le préfixe "CAP_" lors de l'adressage des
constantes des permissions.

docker run --rm -it --cap-drop ALL --cap-add CHOWN alpine chown nobody /

Cette commande ne donne pas non plus de code retour, indiquant une exécution réussie. L'opération réussit car,
bien que vous ayez supprimé toutes les fonctionnalités du compte root du conteneur, vous avez ajouté
la fonctionnalité chown. La fonctionnalité chown est tout ce qui est nécessaire pour changer la propriété d'un
fichier.

Démarrez un autre nouveau conteneur et supprimez uniquement la fonctionnalité chown de son compte racine.

docker run --rm -it --cap-drop CHOWN alpine chown nobody /

chown: /: Operation not permitted

Cette fois, la commande renvoie un code d'erreur indiquant qu'elle a échoué. Cela est d(i au fait que le compte racine
du conteneur n'a pas la capacité CHOWN et ne peut donc pas modifier la propriété d'un fichier ou d'un répertoire.

Lecoeuvre Aymeric | Ricou Ewen 2018

Y

Créez un autre nouveau conteneur et essayez d'ajouter la fonctionnalit¢é CHOWN a l'utilisateur non root
appelé nobody. Dans le cadre de la méme commande, essayez de modifier la propriété d'un fichier ou d'un
dossier.

docker run --rm -it --cap-add chown -u nobody alpine chown nobody /

chown: /: Operation not permitted

La commande ci-dessus échoue car Docker ne prend pas encore en charge l'ajout de fonctionnalités aux
utilisateurs non root.

5.4. CONCLUSION

Vous devriez maintenant savoir comment fonctionne les permissions avec docker, vous avez pu ajouter et supprimer
des fonctionnalités a une série de nouveaux conteneurs, vous avez vu que les permissions peuvent étre ajoutées et
supprimées de I'utilisateur racine d’un conteneur a un niveau trés petit. Vous avez également appris que Docker ne
prendre actuellement pas en charge I'ajout de fonctionnalités aux utilisateurs non root.

6. EXERCICES

Exercices sur Docker 2018 31/31

