

Exercices sur Docker 2018

1 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Docker - Exercices
Docker

Version : Etat : Date Création :

1.0 production 11/04/18

Exercices sur Docker 2018

2 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

AUTEURS

Contributeur Courriel
LECOEUVRE Aymeric Lecoeuvrepro@gmail.com

RICOU Ewen Ewen.ricou2015@gmail.com

 MISES A JOUR

Version § Commentaires
V1.0 Version initiale

Exercices sur Docker 2018

3 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

DOCUMENTS ANNEXES

TERMINOLOGIE

Ce sigle signale une remarque importante dont il faut tenir compte.

Ce sigle signale une note, un exemple.

Ce sigle signale une remarque prioritaire.

Ce sigle signale une note technique

Les images utilisées sont libres de droit et issues des sites Microsoft Office® et OpenClipart.org.

Exercices sur Docker 2018

4 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

TABLE DES MATIERES
1. PRESENTATION DOCKER __ 5

2. EXERCICE 1 ___ 6

2.1. PREMIER CONTENEUR __ 6

2.2. CONTENEUR LINUX ALPINE ___ 8

2.2.1. Docker Container Run 8

2.3. ISOLATION D’UN CONTENEUR __ 10

2.4. TERMINOLOGIE __ 12

3. EXERCICE 2 __ 14

3.1. CREATION D’IMAGE A PARTIR D’UN CONTENEUR __ 14

3.2. CREATION D’IMAGE A L’AIDE D’UN FICHIER DOCKER ___ 17

3.3. COUCHES D’IMAGE ___ 19

3.4. INSPECTION D’IMAGE __ 21

3.5. TERMINOLOGIE __ 22

4. EXERCICE 3 __ 23

4.1. INITIALISEZ VOTRE ESSAIM __ 23

4.2. AFFICHER LES MEMBRES DE L’ESSAIM ___ 24

4.3. DEPLOYER UNE PILE ___ 24

4.4. MISE A L’ECHELLE D’UNE APPLICATION __ 27

4.5. CONCLUSION ___ 27

5. EXERCICE 4 __ 28

5.1. INTRODUCTION AUX PERMISSIONS ___ 28

5.2. COMMENCEMENT __ 28

5.3. TEST DES PERMISSIONS DE DOCKER __ 29

5.4. CONCLUSION ___ 30

6. EXERCICE 5 __ 31

Exercices sur Docker 2018

5 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

1. PRESENTATION DOCKER

Docker est un logiciel libre qui automatise le déploiement d'applications dans des conteneurs logiciels, Docker est

un outil qui peut empaqueter une application et ses dépendances dans un conteneur isolé, qui pourra être exécuté

sur n'importe quel serveur.

Docker étend le format de conteneur Linux standard, LXC, avec une API de haut niveau fournissant une solution

de virtualisation qui exécute les processus de façon isolée. Docker utilise LXC, cgroups, et le noyau Linux lui-

même. Contrairement aux machines virtuelles traditionnelles, un conteneur Docker n'inclut pas de système

d'exploitation, s'appuyant sur les fonctionnalités du système d’exploitation fournies par l'infrastructure sous-

jacente.

Sources : Wikipédia

https://fr.wikipedia.org/wiki/Logiciel_libre
https://fr.wikipedia.org/wiki/LXC
https://fr.wikipedia.org/wiki/Interface_de_programmation
https://fr.wikipedia.org/wiki/Cgroups
https://fr.wikipedia.org/wiki/Noyau_Linux

Exercices sur Docker 2018

6 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

2. EXERCICE 1

2.1. PREMIER CONTENEUR

Dans cet exercice on va apprendre à exécuter un conteneur, gratuit et léger, et explorer les bases du fonctionnement

des conteneurs, on va voir aussi comment Docker exécute et isole les conteneurs les uns des autres.

Concepts de cet exercice :

• Moteur Docker

• Conteneurs et images

• Registres d’images et Docker Store

• Isolement du conteneur

Notre premier conteneur va être le conteneur Hello World. Pour l’exécuter il faut faire :

docker container run hello-world

Ce conteneur va nous dire ce qu’il s’est passé quand on l’exécute :

Exercices sur Docker 2018

7 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

En premier Docker contacte le programme docker exécuté en arrière-plan, ensuite le programme docker a été

chercher l’image intitulé hello-world sur le hub docker, puis il a créé un conteneur depuis cette image et nous a

envoyé ce message. Avant ce message docker n’a pas pu trouver l’image localement du coup il a demandé au

programme docker :

Voici un schéma d’explication de ce qu’il s’est passé :

En premier il ne trouve pas l’image localement, ensuite il demande au hub docker s’il le connaît, ensuite docker crée

le conteneur associé à l’image trouvé sur le hub docker.

Exercices sur Docker 2018

8 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

2.2. CONTENEUR LINUX ALPINE

Pour le reste de l’exercice on va pouvoir exécuter un conteneur linux Alpine est une distribution Linux légère, elle est

donc rapide à « pulled » (récupérer).

Pour commencer exécutez cette commande :

docker image pull alpine

La commande pull récupère l’image alpine sur le registre Docker et l’enregistre dans notre système. Dans le cas présent

le registre docker est le HUB docker.

On peut utiliser la commande docker image pour voir la liste des images sur notre système

docker image ls

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

alpine latest c51f86c28340 4 weeks ago 1.109 MB

hello-world latest 690ed74de00f 5 months ago 960 B

2.2.1. Docker Container Run

Nous pouvons dés à présent lancer un conteneur docker basé sur cette image. Pour ce faire, il faut utiliser la

commande :

Docker container run alpine ls -l

total 48

drwxr-xr-x 2 root root 4096 Mar 2 16:20 bin

drwxr-xr-x 5 root root 360 Mar 18 09:47 dev

drwxr-xr-x 13 root root 4096 Mar 18 09:47 etc

drwxr-xr-x 2 root root 4096 Mar 2 16:20 home

drwxr-xr-x 5 root root 4096 Mar 2 16:20 lib

......

......

Lorsqu’on appelle run, le client Docker trouve l’image, crée le conteneur, puis exécute une commande dans ce

conteneur. Lorsqu’on exécute la commande docker container run alpine ls -l. Docker exécute la commande ls -l dans

le système alpine. Une fois la commande ls faite, le conteneur s’arrête.

Exercices sur Docker 2018

9 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Comme je l’ai expliqué on exécute le conteneur alpine est un envoi la commande ls -l, puis le conteneur s’éteint et

nous revois la réponse de la commande.

Essayez de rentrer la commande qui suit :

docker container run alpine echo "hello from alpine"

On obtient alors ceci :

hello from alpine

Dans ce cas, le client Docker a consciencieusement exécuté la commande echo dans notre conteneur alpine, et l’a arrêté.

Tout cela se fais très rapidement, c’est la grande différence avec une machine virtuelle, si on devait faire ça avec une

machine virtuelle il faudrait démarrer l’OS, puis lancer l’application, et entrer la commande, il faudrait en gros 1 à 2

minutes pour avoir la réponse du echo. Les conteneurs docker fonctionnent au niveau de la couche application, de sorte

qu’ils ignorent la plupart des étapes requises par les machines virtuelles et n’exécutent que ce qui est requis.

Essayez une autre commande :

Docker container run alpine /bin/sh

Après cette commande il n’a dit rien se passé à première vue, en vérité c’est comme si vous avez démarré une 3ème

instance du conteneur alpine et exécuté la commande /bin/sh et qu’il s’est fermé. Il a donc simplement lancé le shell,

quitté le shell et arrêté le conteneur. Docker a une fonctionnalité pour pouvoir rester dans le conteneur sans le fermer

ce « flag » c’est : -it.

Par exemple tapez ce qui suit :

Docker container run -it alpine /bin/sh

Normalement vous êtes à l’intérieur du conteneur exécutant un shell linux, c’est comme si vous avez démarrée une

machine virtuelle mais avec juste le shell. Pour quitter le shell faites : EXIT

Exercices sur Docker 2018

10 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Pour voir les conteneurs en cours d’exécution on peut faire la commande :

Docker container ls

Comme aucun conteneur n’est en cours d’exécution, la réponse est une ligne vide. Essayons maintenant une variante

plus utile :

Docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

36171a5da744 alpine "/bin/sh" 5 minutes ago Exited (0)

2 minutes ago fervent_newton

a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago Exited (0)

6 minutes ago lonely_kilby

ff0a5c3750b9 alpine "ls -l" 8 minutes ago Exited (0)

8 minutes ago elated_ramanujan

c317d0a9e3d2 hello-world "/hello" 34 seconds ago Exited (0)

12 minutes ago stupefied_mcclintock

Ce que vous voyez maintenant c’est une liste de tous les conteneurs que vous avez exécutés.

Il est logique de passer du temps à se familiariser avec les commandes docker run. Pour en savoir plus sur run utilisez

docker container run –help

2.3. ISOLATION D’UN CONTENEUR

Dans les étapes ci-dessus, nous avons exécuté plusieurs commandes via des instances de conteneur avec l'aide de docker

container run. La commande docker container ls -a nous a montré qu'il y avait plusieurs conteneurs listés. Pourquoi y

a-t-il autant de conteneurs s'ils proviennent tous de l’image alpine ?

C'est un concept de sécurité essentiel dans le monde des conteneurs Docker ! Même si chaque commande docker

container run utilisait la même image alpine, chaque exécution est un conteneur séparé et isolé. Chaque conteneur

possède un système de fichiers distinct et s'exécute dans un espace de noms différent ; Par défaut, un conteneur n'a aucun

moyen d'interagir avec d'autres conteneurs, même ceux provenant de la même image. Essayons un autre exercice pour

en savoir plus sur l'isolement.

docker container run -it alpine /bin/ash

le /bin/ash est un autre type de shell disponible dans l’image alpine. Une fois que le conteneur est lancé et que vous êtes

à l’intérieur de l’invite de commande du conteneur, tapez les commandes suivantes :

Exercices sur Docker 2018

11 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

echo "hello world" > hello.txt

ls

La commande echo crée un fichier appelé « hello.txt » avec les mots « hello world » à l’intérieur. La deuxième vous donne

une liste des fichiers situé dans le répertoire et devrait afficher le fichier que vous avez créé. Sortez ensuite du conteneur

avec la commande exit.

Pour montrer comment fonctionne l’isolation, exécutez la commande suivante :

docker container run alpine ls

Cette commande envoie au conteneur alpine la commande ls, mais cette fois, le fichier que vous avez créé juste avant
n’est plus là, c’’est l’isolement. Votre commande est exécutée dans une nouvelle instance distincte, même si elle est
basée sur la même image. La 2ème instance n’a aucun moyen d’interagir avec la 1ère car le moteur docker les maintient
séparés et nous n’avons pas configuré de paramètres supplémentaires qui permettraient à ces deux instances
d’interagir.

L'isolation permet aux utilisateurs de créer rapidement des copies de test isolées et séparées d'une application ou
d'un service et de les faire fonctionner côte à côte sans interférer les uns avec les autres.

Pour pouvoir revenir sur le conteneur qui contient le fichier « hello.txt » il faut récupérer le numéro associé à l’instance
du conteneur pour cela :

docker container ls -a

la commande devrait sortir ça :

Exercices sur Docker 2018

12 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

36171a5da744 alpine "ls" 2 minutes ago Exited (0)

2 minutes ago distracted_bhaskara

3030c9c91e12 alpine "/bin/ash" 5 minutes ago Exited (0)

2 minutes ago fervent_newton

a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago Exited (0)

6 minutes ago lonely_kilby

ff0a5c3750b9 alpine "ls -l" 8 minutes ago Exited (0)

8 minutes ago elated_ramanujan

c317d0a9e3d2 hello-world "/hello" 34 seconds ago Exited (0)

12 minutes ago stupefied_mcclintock

Le conteneur dans lequel nous avons créé le fichier "hello.txt" est le même que celui dans lequel nous avons utilisé le

shell /bin/ash, que nous pouvons voir dans la colonne ‘COMMAND’. Nous pouvons aussi voir un numéro d’identifiant

du conteneur c’est avec ça qu’on va pouvoir retourner sur l’instance souhaité. Pour cela essayez de taper :

docker container start <container ID>

Il est possible d’utiliser qu’on petit bout de l’ID pour faire fonctionner la commande par exemple les 4 premiers
caractères.

2.4. TERMINOLOGIE

Dans la dernière section, vous avez vu beaucoup de jargon spécifique à Docker qui pourrait être déroutant pour

certains. Alors avant d'aller plus loin, clarifions une terminologie fréquemment utilisée dans l'écosystème Docker.

• Images - Le système de fichiers et la configuration de notre application qui sont utilisés pour créer des

conteneurs. Pour en savoir plus sur une image Docker, exécutez docker image inspect alpine. Dans la démo ci-

dessus, vous avez utilisé la commande docker image pull pour le télécharger l’image alpine. Lorsque vous avez

Exercices sur Docker 2018

13 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

exécuté la commande docker container run hello-world, elle a également fait un tour docker image pull en

coulisses pour télécharger l’image hello-world.

• Conteneurs - Exécution d'instances d'images Docker - les conteneurs exécutent les applications réelles. Un

conteneur inclut une application et toutes ses dépendances. Il partage le noyau avec d'autres conteneurs et

s'exécute comme un processus isolé dans l'espace utilisateur du système d'exploitation hôte. Vous avez créé un

conteneur en docker run utilisant l'image alpine que vous avez téléchargée. Une liste des conteneurs en cours

d'exécution peut être consultée à l'aide de la commande docker container ls.

• Docker daemon - Service d'arrière-plan s'exécutant sur l'hôte qui gère la construction, l'exécution et la

distribution des conteneurs Docker.

• Client Docker - L'outil de ligne de commande qui permet à l'utilisateur d'interagir avec le démon Docker.

• Docker Store - est, entre autres, un registre d'images Docker. Vous pouvez considérer le registre comme un

répertoire de toutes les images Docker disponibles. Vous l'utiliserez plus tard dans ce tutoriel.

https://store.docker.com/

Exercices sur Docker 2018

14 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

3. EXERCICE 2
Dans cet exercice on va apprendre à créer une image à partir d’un conteneur, à créer une image à l’aide d’un fichier

docker, on va voir ce qu’est la couche d’images ainsi que les inspections d’images.

Nous allons commencer par la forme la plus simple de création d’image, dans laquelle nous avons simplement une de

nos instances en tant qu’image.

Nous verrons ensuite comment obtenir les détails d'une image à travers l'inspection et explorer le système de fichiers

pour avoir une meilleure compréhension de ce qui se passe derrière

3.1. CREATION D’IMAGE A PARTIR D’UN CONTENEUR

Commençons alors par ouvrir un shell à partir d’un conteneur ubuntu :

Docker container run -ti ubuntu bash

Comme vous le savez, nous avons avec cette commande été chercher l’image appelé ubuntu depuis le docker store et on

a ouvert un shell dans ce conteneur.

Pour customiser un petit peu les choses on va installer un paquet appelé figlet dans ce conteneur. Pour cela tapez les

commandes suivantes :

Apt-get update

Apt-get install -y figlet

Figlet “Hello Docker”

Vous devriez voir les mots « hello docker » imprimés en gros caractères sur l’écran.

Maintenant sortez de ce conteneur :

exit

Supposons maintenant que cette nouvelle application est très utile et que vous voulez la partager avec le reste de

votre équipe. Vous pourriez leur dire de faire exactement ce que vous avez fait ci-dessus et installer figlet dans leur

propre conteneur, mais s’il s’agissait d’une application du monde réel où vous venez d’installer plusieurs paquets et

de passer par plein d’étapes de configuration, le processus peut devenir long et sujet à de nombreuses erreurs. Au lieu

de cela, il serait plus simple de créer une image que vous pouvez partager.

Pour commencer, nous devons obtenir l’ID de ce conteneur en utilisant la commande ls (ne pas oublier l’option -a,

sinon il va juste vous afficher les conteneurs en route, pas ceux qui sont finis).

Docker container ls -a

Avant de créer notre propre image, nous pourrions vouloir inspecter tous les changements que nous avons faits.

Essayez de taper la commande docker container diff <container ID> pour le conteneur que vous venez de créer. Vous

devriez voir une liste de tous les fichiers qui ont été ajoutés ou modifiés dans le conteneur lorsque vous avez installé

Exercices sur Docker 2018

15 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

figlet. Docker garde une trace de toutes ces informations pour nous. Cela fait partie du concept de couche qu’on verra

plus tard.

Maintenant, pour créer une image, nous devons « valider » ce conteneur. Pour cela il faut utiliser l’option commit qui

va créer une image localement sur le système exécutant le moteur docker. Exécutez la commande suivante, en utilisant

l’ID du conteneur ubuntu, afin de valider le conteneur et créer une image à partir de celui-ci.

Docker container commit <container id>

C’est tout, vous avez créé votre première image ! Une fois qu’elle a été créée, nous pouvons voir l’image dans la liste

des images disponibles

Docker image ls

Vous devriez voir quelque chose comme ceci :

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> a104f9ae9c37 46 seconds ago 160MB

ubuntu latest 14f60031763d 4 days ago 120MB

Notez que l’image que nous avons pris du store docker dans la première étape (ubuntu) est listée ici avec notre propre

image personnalisée. Sauf que notre image personnalisée n’a aucune information dans les colonnes REPOSITORY ou

TAG, ce qui rendrait difficile d’identifier exactement ce qui se trouvait dans ce conteneur si nous voulions le partager

L’ajout de cette information à une image est connu comme le marquage d’une image. A partir de la commande

précédente, récupérez l’ID de l’image nouvellement créée et marquez-la pour qu’elle s’appelle ourfiglet :

Docker image tag <image_id> ourfiglet

Docker image ls

Maintenant nous avons le nom plus convivial « ourfiglet » que nous pouvons utiliser pour identifier notre image.

REPOSITORY TAG IMAGE ID CREATED SIZE

ourfiglet latest a104f9ae9c37 5 minutes ago 160MB

ubuntu latest 14f60031763d 4 days ago 120MB

Exercices sur Docker 2018

16 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Voici une vue graphique de ce qu’on a fait :

Maintenant, nous allons exécuter un conteneur basé sur l’image ourfiglet nouvellement créée :

Docker container run ourfiglet figlet hello

Comme le paquet figlet est présent dans notre image ourfiglet, la commande renvoie la sortie suivante :

Cet exemple montre que nous pouvons créer un conteneur, y ajouter toutes les bibliothèques et les applications qu’on

souhaite, et il suffit de le valider pour créer une image. Nous pouvons ensuite utiliser cette image comme nous le

ferions pour les images tirées du Docker Store. Nous avons encore un léger problème parce que notre image est

stockée uniquement localement. Pour partager l'image, nous voulons pousser l'image vers un registre quelque part.

Comme mentionné ci-dessus, cette approche consistant à installer manuellement un logiciel dans un conteneur puis

à l'appliquer à une image personnalisée n'est qu'une façon de créer une image. Cela fonctionne bien et est assez

commun. Cependant, il existe un moyen plus puissant de créer des images. Dans le chapitre suivant, nous verrons

comment les images sont créées en utilisant un Dockerfile, qui est un fichier texte contenant toutes les instructions

pour construire une image.

Exercices sur Docker 2018

17 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

3.2. CREATION D’IMAGE A L’AIDE D’UN FICHIER DOCKER

Au lieu de créer une image binaire statique, nous pouvons utiliser un fichier appelé Dockerfile pour créer une image. Le

résultat final est essentiellement le même, mais avec un Dockerfile nous fournissons les instructions pour construire

l'image, plutôt que seulement les fichiers binaires bruts. C'est utile car il devient beaucoup plus facile de gérer les

changements, d'autant plus que vos images deviennent plus grandes et plus complexes.

Par exemple, si une nouvelle version de figlet est publiée, nous devrons soit recréer notre image à partir de rien, soit

lancer notre image et mettre à jour la version installée de figlet. En revanche, un Dockerfile inclurait les commandes

apt-get que nous avons utilisées pour installer figlet afin que nous - ou quiconque utilisant le Dockerfile - puissions

simplement recomposer l'image en utilisant ces instructions.

En pratique, les Dockerfiles peuvent être gérés de la même manière que vous pouvez gérer un code source : ce sont

simplement des fichiers texte, donc presque n'importe quel système de contrôle de version peut être utilisé pour gérer

Dockerfiles au fil du temps.

Nous allons utiliser un exemple simple dans cette section et construire une application "hello world" dans Node.js. (Pas

besoin d’être familier avec Node.js pour comprendre comment ça fonctionne.)

Nous commencerons par créer un fichier dans lequel nous récupérerons le nom d’hôte et l’afficherons.

Tapez le contenu suivant dans un fichier nommé index.js. Vous pouvez utiliser vi, vim ou plusieurs autre éditeurs linux

dans cet exercice.

var os = require("os");

var hostname = os.hostname();

console.log("hello from " + hostname);

Le fichier que nous venons de créer est le code javascript pour notre serveur. Comme vous pouvez probablement le

devenir, Node.js affichera simplement un message « hello ». Nous allons utiliser alpine comme image de base du système

d’exploitation, ajouter un runtime node.js, puis copier notre code source dans le conteneur.

Nous spécifierons également la commande par défaut à exécuter lors de la création du conteneur.

Créez un fichier nommé Dockerfile et copiez le contenu suivant dans celui-ci.

FROM alpine

RUN apk update && apk add nodejs

COPY . /app

WORKDIR /app

CMD ["node","index.js"]

Construisons notre première image avec ce Dockerfile et nommez-le hello: v0.1 :

Exercices sur Docker 2018

18 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

docker image build -t hello:v0.1 .

Voilà une image qui récapitule ce que vous avez fait :

Ensuite démarrez un conteneur pour vérifier que nos applications s’exécutent correctement :

Docker container run hello :v0.1

Vous devriez alors avoir une sortie similaire à la suivante (l’id sera différent pour vous):

hello from 92d79b6de29f

Qu'est-ce qui vient de se passer ? Nous avons créé deux fichiers : notre code d'application (index.js) est un simple
code javascript qui imprime un message. Et le Dockerfile est les instructions pour le moteur Docker pour créer notre
conteneur personnalisé. Ce Dockerfile fait ce qui suit :

1. Spécifie une image de base à tirer depuis l’image alpine que nous avons utilisée dans les labos précédents.
2. Ensuite, il exécute deux commandes (apk update et apk add) à l'intérieur de ce conteneur qui installe le

serveur Node.js.

Exercices sur Docker 2018

19 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

3. Ensuite, nous lui avons dit de copier les fichiers de notre répertoire de travail dans le conteneur. Le seul
fichier que nous avons en ce moment est notre index.js.

4. Ensuite, nous spécifions WORKDIR - le répertoire que le conteneur doit utiliser lorsqu'il démarre
5. Enfin, nous avons donné à notre conteneur une commande (CMD) à exécuter lorsque le conteneur démarre.

3.3. COUCHES D’IMAGE

Il y a autre chose d'intéressant dans les images que nous construisons avec Docker. En cours d'exécution, ils semblent

être un système d'exploitation unique et une application. Mais les images elles-mêmes sont en réalité construites

en couches. Si vous revenez en arrière et regardez la sortie de votre commande docker image build, vous remarquerez

qu'il y avait 5 étapes et chaque étape avait plusieurs tâches.

Les couches sont un concept important. Pour explorer cela, nous allons passer par un autre ensemble d'exercices.

Tout d'abord, vérifiez l'image que vous avez créée précédemment en utilisant la commande history :

Docker image history <image id>

Ce que vous voyez est la liste des images de conteneur intermédiaires qui ont été construites en même temps que la

création de votre image finale de l'application Node.js. Certaines de ces images intermédiaires deviendront

des couches dans votre image finale du conteneur.

Dans la sortie de la commande history, les calques Alpine d'origine sont en bas de la liste, puis chaque personnalisation

que nous avons ajoutée dans notre Dockerfile est son propre pas dans la sortie. C'est un concept puissant car cela

signifie que si nous devons apporter une modification à notre application, cela ne peut affecter qu'une seule couche

! Pour voir cela, nous allons modifier un peu notre application et créer une nouvelle image.

Tapez le texte suivant dans votre fenêtre de console :

echo "console.log(\"this is v0.2\");" >> index.js

Cela ajoutera une nouvelle ligne au bas de votre fichier index.js. Maintenant, nous allons construire une nouvelle

image en utilisant notre code mis à jour. Nous allons également marquer notre nouvelle image pour la marquer comme

une nouvelle version afin que toute personne consommant nos images plus tard peut identifier la bonne version à

utiliser :

docker image build -t hello:v0.2

Exercices sur Docker 2018

20 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Vous devriez voir une sortie similaire à ceci :

Sending build context to Docker daemon 86.15MB

Step 1/5 : FROM alpine

 ---> 7328f6f8b418

Step 2/5 : RUN apk update && apk add nodejs

 ---> Using cache

 ---> 2707762fca63

Step 3/5 : COPY . /app

 ---> 07b2e2127db4

Removing intermediate container 84eb9c31320d

Step 4/5 : WORKDIR /app

 ---> 6630eb76312c

Removing intermediate container ee6c9e7a5337

Step 5/5 : CMD node index.js

 ---> Running in e079fb6000a3

 ---> e536b9dadd2f

Removing intermediate container e079fb6000a3

Successfully built e536b9dadd2f

Successfully tagged hello:v0.2

Exercices sur Docker 2018

21 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

3.4. INSPECTION D’IMAGE

Maintenant, nous allons voir l’inspection d’image, l’inspection d’image peut être pratique dans des cas où on souhaite

savoir le contenu du conteneur ainsi que ces details, les commandes qu’il peut exécuter, le système d’exploitation et

plus encore.

L’image alpine doit déjà être présente localement sinon, exécutez la commande suivante :

docker image pull alpine

Une fois que nous sommes sûrs qu’il est là, inspectons-le

Docker image inspect alpine

Il y a beaucoup d’informations là-dedans :

• Les couches de l'image est composée de

• Le pilote utilisé pour stocker les calques

• L’architecture / le système d'exploitation pour lequel il a été créé

• Métadonnées de l'image

• ...

Nous n'entrerons pas dans tous les détails ici mais nous pouvons utiliser des filtres pour inspecter des détails
particuliers sur l'image. Vous avez peut-être remarqué que les informations sur l'image sont au format JSON. Nous
pouvons en profiter pour utiliser la commande inspect avec quelques informations de filtrage pour obtenir des
données spécifiques de l'image.

Obtenons la liste des calques :

docker image inspect --format "{{ json .RootFS.Layers }}" alpine

Alpine est juste une petite image de base de l'OS donc il n'y a qu'une seule couche :

["sha256:60ab55d3379d47c1ba6b6225d59d10e1f52096ee9d5c816e42c635ccc57a5a2b"]

Nouveau regardons notre image Hello personnalisée. Vous aurez besoin de l'identifiant de l'image :

docker image inspect --format "{{ json .RootFS.Layers }}" <image ID>

Notre image est un peu plus intéressante :

Exercices sur Docker 2018

22 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

["sha256:5bef08742407efd622d243692b79ba0055383bbce12900324f75e56f589aedb0","sha256:5ac283aaea74

2f843c869d28bbeaf5000c08685b5f7ba01431094a207b8a1df9","sha256:2ecb254be0603a2c76880be45a5c2b028

f6208714aec770d49c9eff4cbc3cf25"]

Nous avons trois couches dans notre application.

3.5. TERMINOLOGIE

• Calques - Une image Docker est construite à partir d'une série de calques. Chaque couche représente une
instruction dans le fichier Docker de l'image. Chaque couche sauf la dernière est en lecture seule.

• Dockerfile - Un fichier texte qui contient toutes les commandes, dans l'ordre, nécessaires pour construire
une image donnée. La page de référence Dockerfile répertorie les différentes commandes et les détails de
format pour Dockerfiles.

• Volumes - Une couche de conteneur Docker spéciale qui permet aux données de persister et d'être
partagées séparément du conteneur lui-même. Considérez les volumes comme un moyen d'abstraire et de
gérer vos données persistantes séparément de l'application elle-même.

https://docs.docker.com/engine/reference/builder

Exercices sur Docker 2018

23 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

4. EXERCICE 3

Jusqu'à présent, nous avons exploré l'utilisation d'instances uniques de conteneurs s'exécutant sur

un seul hôte, un peu comme un développeur peut le faire en travaillant sur une seule application

de service ou comme un administrateur informatique peut le faire sur un banc d'essai. Les

applications de production sont généralement beaucoup plus complexes et ce modèle de serveur

unique ne fonctionnera pas pour coordonner 10 ou 100 conteneurs et les connexions réseau entre

eux, sans parler de la nécessité d'assurer la disponibilité et la capacité de mise à l'échelle.

Pour les applications réelles, les utilisateurs informatiques et les équipes d'applications ont besoin

d'outils plus sophistiqués. Docker fournit deux de ces outils: Docker Compose et Docker Swarm

Mode . Les deux outils ont quelques similitudes mais quelques différences importantes:

Compose est utilisé pour contrôler plusieurs conteneurs sur un seul système. Tout comme

le Dockerfile que nous avons examiné pour construire une image, il y a un fichier texte qui décrit

l’application : quelles images utiliser, combien d'instances, les connexions réseau, etc.

Mais Compose ne fonctionne que sur un seul système.

Docker Swarm indique à Docker que vous exécuterez de nombreux moteurs Docker et que vous

souhaitez coordonner les opérations entre eux. Le mode Swarm combine la possibilité de définir

non seulement l'architecture de l'application, comme Composer, mais aussi de définir et de

maintenir des niveaux de haute disponibilité, la mise à l'échelle, l'équilibrage de charge, etc. Avec

toutes ces fonctionnalités, le mode Swarm est plus souvent utilisé dans les environnements de

production que son cousin simpliste, Compose.

4.1. INITIALISEZ VOTRE ESSAIM

La première chose que nous devons faire est de dire à nos hôtes Docker que nous voulons utiliser

le mode Docker Swarm. Les essaims peuvent être simplement un seul nœud, mais cela est

inhabituel car vous ne disposez pas de capacités de haute disponibilité et vous limiteriez

sévèrement votre évolutivité. La plupart des essaims de production ont au moins trois nœuds

de gestion dans eux et de nombreux nœuds de travail. Trois gestionnaires est le minimum pour

avoir un véritable cluster à haute disponibilité avec quorum. Notez que les nœuds de gestionnaire

peuvent exécuter vos tâches de conteneur de la même manière qu'un nœud de travail, mais cette

fonctionnalité peut également être séparée afin que les gestionnaires n'effectuent que les tâches

de gestion.

L’initialisation du mode Docker Swarm est facile. Dans votre première fenêtre de terminal que vous utilisez entrez :

docker swarm init --advertise-addr $(hostname -i)

Exercices sur Docker 2018

24 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Vous devriez avoir ceci :

Swarm initialized: current node (tjocs7ul557phkmp6mkpjmu3f) is now a manager.

To add a worker to this swarm, run the following command:

Docker swarm join --token SWMTKN-1-3b33jjwsqpkcy2c8og73aorjf2ao9sjm4crvbwg3xpd1ome459-

ckfdcxqqahb9gy9s2t9n5mi78 10.0.25.3:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

Dans la sortie de votre swarm init, on vous donne une commande au milieu qui ressemble à celle docker swarm join
-token SWMTKN-X-abcdef….que vous utilisez pour joindre des nœuds de travail à l'essaim. Vous recevez également
une deuxième commande docker swarm join-token manager pour l'ajout de gestionnaires supplémentaires.

Nous allons ajouter un travailleur. Copiez la commande "docker swarm join ..." de la sortie de votre manager et
collez-la dans une 2ème fenêtre d’un terminal.

Votre docker swarm devrait fonctionner maintenant, vous aurez donc un gestionnaire et un travailleur. Comme
indiqué ci-dessus, vous auriez presque toujours 3 nœuds de gestionnaire ou plus et plusieurs nœuds de travail afin
de maintenir la haute disponibilité et l'évolutivité, mais un de chaque est suffisant pour commencer.

4.2. AFFICHER LES MEMBRES DE L’ESSAIM

À partir de la première fenêtre de terminal, vérifiez le nombre de nœuds dans l'essaim :

docker node ls

4.3. DEPLOYER UNE PILE

Une pile est un groupe de services déployés ensemble : plusieurs composants conteneurisés d’une applicaiton qui
s’exécutent dans des instances distinctes. Chaque service individuel peut en fait être constitué d’un ou de plusieurs
conteneurs, appelés tâches, puis toutes les tâches et tous les services forment ensemble une pile.

Comme avec Dockerfiles et les fichiers Compose, le fichier qui définit une pile est un fichier texte brut facile à éditer
et à suivre. Dans notre exercice, il y a un fichier appelé docker-stack.yml dans le dossier en cours qui sera utilisé pour
déployer l’application de vote en tant que pile.

Entrez les informations suivantes pour étudier le fichier docker-stack.yml :

Cat docker-stack.yml

Ce fichier YAML définit l'ensemble de notre pile : l'architecture des services, le nombre d'instances, la manière dont
tout est câblé, comment gérer les mises à jour de chaque service. C'est le code source de notre conception
d'application. Quelques éléments de note particulière :

• Près du haut du fichier, vous verrez la ligne "services :". Ce sont les composants d'application
individuels. Dans l'application de vote, nous avons redis, db, vote, résultat, travailleur et visualiser comme
nos services.

• Sous chaque service se trouvent des lignes qui spécifient comment ce service doit s’exécuter :
o Notez l’image familière de terme des laboratoires plus tôt ? Même idée ici : c'est l'image du

conteneur à utiliser pour un service particulier.

Exercices sur Docker 2018

25 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

o Les ports et les réseaux s'expliquent d'eux-mêmes, bien qu'il soit utile de souligner que ces réseaux
et ports peuvent être utilisés de manière privée dans la pile ou qu'ils peuvent permettre une
communication externe vers et depuis une pile. 2

o Notez que certains services ont une réplique étiquetée en ligne : cela indique le nombre d'instances,
ou de tâches, de ce service que les gestionnaires Swarm doivent démarrer lorsque la pile est mise en
place. Le moteur Docker est assez intelligent pour charger automatiquement l'équilibre entre
plusieurs réplicas en utilisant des équilibreurs de charge intégrés. (L'équilibreur de charge intégré
peut, bien sûr, être remplacé par autre chose.)

Vérifiez que vous êtes dans le terminal du gestionnaire [node1] et procédez comme suit :

docker stack deploy --compose-file=docker-stack.yml voting_stack

Vous pouvez voir si la pile déployée depuis le terminal du gestionnaire [node1]

docker stack ls

La sortie devrait être la suivante. Il indique que les 6 services de la pile de l'application de vote (nommée
voting_stack) ont été déployés.

NAME SERVICES

voting_stack 6

Nous pouvons obtenir des détails sur chaque service dans la pile avec ce qui suit :

docker stack services voting_stack

La sortie devrait être similaire à la suivante, bien que naturellement vos ID seront uniques :

https://training.play-with-docker.com/ops-s1-swarm-intro/#fn-network

Exercices sur Docker 2018

26 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

ID NAME MODE REPLICAS IMAGE

10rt1wczotze voting_stack_visualizer replicated 1/1 dockersample

s/visualizer:stable

8lqj31k3q5ek voting_stack_redis replicated 1/1 redis:alpine

nhb4igkkyg4y voting_stack_result replicated 1/1 dockersample

s/examplevotingapp_result:before

nv8d2z2qhlx4 voting_stack_db replicated 1/1 postgres:9.4

ou47zdyf6cd0 voting_stack_vote replicated 2/2 dockersample

s/examplevotingapp_vote:before

rpnxwmoipagq voting_stack_worker replicated 1/1 dockersample

s/examplevotingapp_worker:latest

Si vous voyez qu'il y a 0 répliques, attendez quelques secondes et entrez à nouveau la commande. L'Essaim finira par
avoir toutes les répliques en cours d'exécution pour vous. Tout comme notre fichier docker-stack spécifié, il y a deux
répliques du service voting_stack_vote et une de chacune des autres.

Lister les tâches du service de vote.

docker service ps voting_stack_vote

Vous devriez obtenir une sortie comme la suivante où les 2 tâches (réplicas) du service sont listées.

ID NAME IMAGE

NODE DESIRED STATE CURRENT STATE ERROR PORTS

my7jqgze7pgg voting_stack_vote.1 dockersamples/examplevotingapp_vote:be

fore node1 Running Running 56 seconds ago

3jzgk39dyr6d voting_stack_vote.2 dockersamples/examplevotingapp_vote:be

fore node2 Running Running 58 seconds ago

Exercices sur Docker 2018

27 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

À partir de la colonne NODE, nous pouvons voir qu'une tâche est en cours d'exécution sur chaque nœud. Cette

application est dotée d'un VISUALIZER SWARM intégré pour vous montrer comment l'application est configurée et en

cours d'exécution. Vous pouvez également accéder à l' interface utilisateur Web frontale de l'application.

Le SWARM VISUALIZER vous donne la disposition physique de la pile, mais voici une interprétation logique de la façon

dont les piles, les services et les tâches sont liés :

4.4. MISE A L’ECHELLE D’UNE APPLICATION

Comment pouvons-nous dire à notre application d'ajouter plus de répliques de notre service de vote ? En production,

vous pouvez l'automatiser via les API de Docker mais pour l'instant nous le ferons manuellement. Vous pouvez

également modifier le fichier docker-stack.yml et modifier les spécifications si vous souhaitez que la taille de l'échelle

soit plus permanente. Tapez ce qui suit sur le terminal [node1] :

docker service scale voting_stack_vote=5

Vous devriez voir le nombre de répliques pour le service de vote augmenter à 5 et dans quelques secondes,

Swarm les fera toutes fonctionner.

4.5. CONCLUSION

L'utilisation de seulement quelques commandes vous permet de déployer une pile de services en utilisant Docker

Swarm Mode pour orchestrer la pile entière, toutes conservées dans le format de fichier Docker Compose simple

et lisible par l'homme.

https://training.play-with-docker.com/
https://training.play-with-docker.com/
https://training.play-with-docker.com/

Exercices sur Docker 2018

28 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

5. EXERCICE 4

Cet exercice est un exercice sécurité sur les permissions, dans cet exercice vous apprendrez les bases des

fonctionnalités du noyau Linux. Vous apprendrez comment ils fonctionnent avec Docker, certaines commandes de

base pour les afficher et les gérer, ainsi que comment ajouter et supprimer des fonctionnalités dans de nouveaux

conteneurs.

5.1. INTRODUCTION AUX PERMISSIONS

Le noyau Linux est capable de décomposer les privilèges de l’utilisateur root en unités distinctes appelées permissions.

Par exemple, la fonctionnalité CAP_CHOWN permet à l'utilisateur root d'apporter des modifications arbitraires aux

UID et aux GID des fichiers. La fonction CAP_DAC_OVERRIDE permet à l'utilisateur root de contourner les contrôles

d'autorisation du noyau sur les opérations de lecture, d'écriture et d'exécution de fichiers. Presque toutes les

puissances spéciales associées à l'utilisateur root de Linux sont décomposées en permissions individuelles.

Cette répartition des privilèges root en petite fonctionnalités vous permet de :

• Supprimez les permissions individuelles du compte root d’utilisateur, ce qui le rend moins puissant/dangereux.

• Ajoutez des privilèges aux utilisateurs non root à un niveau très petit.

Les permissions s'appliquent aux fichiers et aux threads. Les capacités de fichiers permettent aux utilisateurs

d'exécuter des programmes avec des privilèges plus élevés. Ceci est similaire à la façon dont le bit setuid

fonctionne. Les fonctionnalités Thread permettent de suivre l'état actuel des capacités des programmes en cours

d'exécution.

Docker impose certaines limitations qui rendent le travail avec des permissions beaucoup plus simple. Par

exemple, les permissions de fichiers sont stockées dans les attributs étendus d'un fichier et les attributs étendus

sont supprimés lorsque les images Docker sont créées. Cela signifie que vous n'aurez normalement pas trop à

vous soucier des permissions de fichiers dans les conteneurs.

5.2. COMMENCEMENT

Dans cette étape, vous apprendrez l’approche de base pour gérer les permissions avec docker. Vous apprendrez

également les commandes Docker utilisées pour gérer les fonctionnalités du compte racine d’un conteneur.

A partir de Docker vous avez 3 options de haut niveau pour utiliser les permissions :

• Exécutez des conteneurs en tant que root avec un grand nombre de fonctionnalités et essayez de gérer

manuellement les fonctionnalités de votre conteneur.

• Exécutez des conteneurs en tant que root avec des permissions limitées et ne jamais les modifiez dans un

conteneur

• Exécutez des conteneurs en tant qu’utilisateur non privilégié sans fonctionnalités.

L’option 2 est la plus réaliste, l’option 3 serait idéale mais pas réaliste et l’option 1 devrait être évitée autant que

possible.

Dans les commandes suivantes, $cap sera utilisé pour indiquer une ou plusieurs permissions individuelles.

Exercices sur Docker 2018

29 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Pour supprimer des fonctionnalités du compte root d’un conteneur :

docker run --rm -it --cap-drop $CAP alpine sh

Pour ajouter des fonctionnalités au compte root d’un conteneur :

docker run --rm -it --cap-add $CAP alpine sh

Pour supprimer toutes les fonctionnalités, puis ajouter explicitement des fonctionnalités individuelles au compte root

d’un conteneur :

docker run --rm -it --cap-drop ALL --cap-add $CAP alpine sh

Le noyau Linux préfixe toutes les constantes de permissions avec "CAP_". Par exemple, CAP_CHOWN,

CAP_NET_ADMIN, CAP_SETUID, CAP_SYSADMIN etc. Les constantes de permissions Docker ne sont pas préfixées avec

"CAP_" mais correspondent aux constantes du noyau.

5.3. TEST DES PERMISSIONS DE DOCKER

Dans cette étape, vous allez commencer divers nouveaux conteneurs. Chaque fois que vous utiliserez les commandes

apprises à l'étape précédente pour modifier les fonctionnalités associées au compte utilisé pour exécuter le conteneur.

Démarrer un nouveau conteneur et prouver que le compte root du conteneur peut changer la propriété des fichiers :

docker run --rm -it alpine chown nobody /

Si la commande ne donne aucun code de retour c’est normal c’est que l’opération a réussi. La commande fonctionne

par ce que le comportement par défaut est que les nouveaux conteneurs doivent être démarrés avec un utilisateur

root. Cet utilisateur a la capacité CAP_CHOWN par défaut.

Démarrez un autre nouveau conteneur et supprimez toutes les fonctionnalités du compte racine des conteneurs

autres que CAP_CHOWN. N'oubliez pas que Docker n'utilise pas le préfixe "CAP_" lors de l'adressage des

constantes des permissions.

docker run --rm -it --cap-drop ALL --cap-add CHOWN alpine chown nobody /

Cette commande ne donne pas non plus de code retour, indiquant une exécution réussie. L'opération réussit car,

bien que vous ayez supprimé toutes les fonctionnalités du compte root du conteneur, vous avez ajouté

la fonctionnalité chown. La fonctionnalité chown est tout ce qui est nécessaire pour changer la propriété d'un

fichier.

Démarrez un autre nouveau conteneur et supprimez uniquement la fonctionnalité chown de son compte racine.

docker run --rm -it --cap-drop CHOWN alpine chown nobody /

chown: /: Operation not permitted

Cette fois, la commande renvoie un code d'erreur indiquant qu'elle a échoué. Cela est dû au fait que le compte racine

du conteneur n'a pas la capacité CHOWN et ne peut donc pas modifier la propriété d'un fichier ou d'un répertoire.

Exercices sur Docker 2018

30 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

Créez un autre nouveau conteneur et essayez d'ajouter la fonctionnalité CHOWN à l'utilisateur non root

appelé nobody. Dans le cadre de la même commande, essayez de modifier la propriété d'un fichier ou d'un

dossier.

docker run --rm -it --cap-add chown -u nobody alpine chown nobody /

chown: /: Operation not permitted

La commande ci-dessus échoue car Docker ne prend pas encore en charge l'ajout de fonctionnalités aux

utilisateurs non root.

5.4. CONCLUSION

Vous devriez maintenant savoir comment fonctionne les permissions avec docker, vous avez pu ajouter et supprimer

des fonctionnalités à une série de nouveaux conteneurs, vous avez vu que les permissions peuvent être ajoutées et

supprimées de l’utilisateur racine d’un conteneur à un niveau très petit. Vous avez également appris que Docker ne

prendre actuellement pas en charge l’ajout de fonctionnalités aux utilisateurs non root.

Exercices sur Docker 2018

31 / 31

Lecoeuvre Aymeric | Ricou Ewen 2018

6. EXERCICE 5

