
Version Control with Git

h
tt

p
:/

/f
lic

.k
r/

p
/6

o
P

7
x7

Why track/manage revisions?

Backup: Undo or refer to old stuff

http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging

Branch: Maintain old release while
working on new

http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging

Collaborate: Work in parallel with teammates

http://git-scm.com/book/en/Distributed-Git-Distributed-Workflows

Version Control Systems (VCSs)

• Help you track/manage/distribute revisions

• Standard in modern development

• Examples:

– Revision Control System (RCS)

– Concurrent Versions System (CVS)

– Subversion (SVN)

– Git

Our focus

older

newer

https://git-scm.com

https://github.com

https://desktop.github.com

Configure your Git client

• Check config info:

• Fix if necessary:

$ git config --list

user.name=MDevoldere

user.email=mdevoldere@arfp.asso.fr

$ git config --global user.name "John Doe"

$ git config --global user.email jdoe@example.com

GitHub-User Perspective

Working Dir
Local
Repos

Remote
Repos

You GitHub

Let’s begin with an example…

You GitHub

Log into GitHub and create a repos
(with add README option)

You GitHub

Remote
Repos

1. Go to your Repos page

2. On Repos page, click « New »

https://github.com

$ git clone https://github.com/arfp/comp4081_demo.git

You GitHub

Remote
Repos

Local
Repos

Working Dir

git clone https://github.com/mdevoldere/edu-dataset.git

GitHub Desktop

Working Directory (the files you are working on)

Local Repository

$ git clone https://github.com/arfp/comp4081_demo.git

You GitHub

Remote
Repos

Local
Repos

Working Dir

$ cd comp4081_demo

// Add/edit files

$ git add -A

$ git commit –m "Created project skeleton"

You GitHub

Remote
Repos

Local
Repos

Working Dir

$ git push

You GitHub

Remote
Repos

Local
Repos

Working Dir

You GitHub

Remote
Repos

Local
Repos

Working Dir

Questions to answer

How organized?

What operations?

Important: before starting to work

Update your local repository
to make sure you're in sync
with the remote repository

git fetch origin

Add / Edit files

$ cd comp4081_demo

// Add/edit files

$ git add -A

$ git commit –m "Created project skeleton"

You GitHub

Remote
Repos

Local
Repos

Working Dir

$ git push

You GitHub

Remote
Repos

Local
Repos

Working Dir

https://github.com/mdevoldere/edu-dataset

How the repos is organized

http://git-scm.com/book/

How the repos is organized

http://git-scm.com/book/

Github Desktop

Github.com

How are commits organized?

How the repos is organized

http://git-scm.com/book/

How the repos is organized

Commits (from oldest
to newest; hashes as

commit IDs)

http://git-scm.com/book/

How the repos is organized

Snapshot of all files
at each commit

http://git-scm.com/book/

How the repos is organized

Branch (last commit)

http://git-scm.com/book/

How commit works

http://git-scm.com/book/

Before

How commit works

http://git-scm.com/book/

After

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

Make changes
in local branch

Merge with
GitHub repos

Organization with two branches

Organization with two branches

Last commit of
each branch

Organization with two branches

Currently checked
out branch

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

$ git branch my-branch
$ git checkout my-branch
ou
$ git checkout –b my-banch

$ git branch testing

Before

How git branch works

$ git branch testing

After

How git branch works

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

Before

How git checkout works

$ git checkout testing

After

How git checkout works

$ git checkout testing

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How git commit works
with multiple branches

Edit some stuff

$ git add -A

$ git commit –m "blah"

Before

How git commit works
with multiple branches

After

Edit some stuff

$ git add -A

$ git commit –m "blah"

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How git checkout works

$ git checkout master

Before

How git checkout works

After

$ git checkout master

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How git pull works

Someone else pushed

$ git pull

Before

How git pull works

After

Someone else pushed

$ git pull

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How git merge works

Before

$ git merge testing

How git merge works

After

$ git merge testing

e2b92

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How to delete branches

Before

$ git branch -d testing

e2b92

How to delete branches

After

$ git branch -d testing

e2b92

Common Workflow

1. Create temp local branch

2. Checkout temp branch

3. Edit/Add/Commit on temp branch

4. Checkout master branch

5. Pull to update master branch

6. Merge temp branch with updated master

7. Delete temp branch

8. Push to update server repos

How git push works

Should update server repos
(if no one else has pushed commits to

master branch since last pull)

$ git push

e2b92

Tips

• git output contains lots of hints

– git status is your friend!

• Merging may not be as easy as showed

– E.g.: Multiple collabs updated same parts of file

• Pull before starting temp branch

• Team communication important !

Pop Quiz

• 5 questions

• Update diagram in each

– Commit nodes

– Branch nodes

• Based on actions of Alice and Bob

– Collaborating via GitHub repo

Start like this
Scott Fleming SF 1

11111

master

GitHub

Alice

Bob

11111

master

Question 1

• Alice:

– $ git clone https://github.com/whatever.git

– $ cd whatever

• Bob:

– $ git clone https://github.com/whatever.git

– $ cd whatever

(include the HEAD node)

Question 2

• Alice:

– $ git branch myfix

– $ git checkout myfix

• (Alternatively)

– $ git checkout -b myfix

Question 3

• Alice:

– $ rails generate scaffold User …

– $ git add -A

– $ git commit -m "Added User" # 22222

• Bob:

– $ rails generate scaffold Micropost …

– $ git add -A

– $ git commit -m "Added Micropost" # 33333

Question 4

• Bob:

– git push

Question 5

• Alice:

– git pull

Appendix

What if…

class Micropost < ActiveRecord::Base

validates :content, length: { maximum: 140 }

end

app/models/micropost.rb

class Micropost < ActiveRecord::Base

validates :content, length: { maximum: 120 }

end

app/models/micropost.rb

Alice did this:

Bob did this:

11111

master

22222

33333

myfix

$ git checkout master
$ git merge myfix

What if Alice did this?

$ git merge myfix
Auto-merging app/models/micropost.rb
Automatic merge failed; fix conflict and then commit result.

class Micropost < ActiveRecord::Base

<<<<<<< HEAD

validates :content, length: { maximum: 140 }

=======

validates :content, length: { maximum: 120 }

>>>>>>> myfix

end

app/models/micropost.rb

To resolve:
Manually fix the file; git add and commit

Reality

Reality

End

