Conception & Développement Informatique

DEVELOPPEMENT JAVA C Q M-

APPRENTISSAGE CENTRE DE READAPTATION
— MULHOUSE ——

Rééducation et Formation Professionnelle

Java

Syntaxe de base

L= D Tl 1IN o X- 1N 1
A L] o)L= OO ST T SR O PP OPRRIN 1
POUrQUOI "Variable" ... e 1
IR o TST3 e LR 2= 5 = o L 2

L0 T =T o L o T Tl (=T =T PO ST ST ST PP PP 2
(6o o oF | =T - Ao o FE TP PP ST PP P PR OPPRRN 3

[T =) o] £ =TT (o] o PP 3
EXPrESSION BOOIBENNEo e e e aaaaa e 3
21T oo [l oo o [ISP PP PP OPRRPPORE 4

LeS StrUCTUIES CONAILIONNEIIESeeieiiiieiee ettt ettt e et e e st e s s e et e s ar et e e s nre e e s sar et e e s mneeeesnreeesaanneeenans 5
[/ ELSE . ettt ettt ettt ettt ettt et ettt e a e e a e e n bt e n bt ekt e a bt e a b e enteea ke enE e ekt e Rt ekt e Ee ekt e tee ke e Eeeeheeaheenheenheeeheenheenheenheenheenheenree e 5
[F / ELSEIF / ELSE «..teetteete et et ettt ettt et ettt et et et et et et e e be e bt et e et e emteen s e et e et e et e et e et e e beebeenbeesbeesbeesbeesbeesbeesbeesbeesbnees 5
SWITCH / CASE ...ttt ettt ettt et e et e bt e bt et e st e sseeaaeesbeeaae e s et e ea e e ee e e ea e e es e e ea b e e et e e m b e ea b e em b e en b e embeenbeenbeenbeenbeenbeenbeenbeenbeenes 6

LES SEIUCTUIES FEPELITIVES ..o e e e e e e e e e 6
LT LTSRN 7
[Lo IV o T L= PP PPPPPPRPPN 7
o TSP TPPPPPN 7

(e aTeia Lo aTa =T a g L=l o e (U ol L PP PPPPRPPN 8

(RT3 =] o] [T [D ST PP UPUPPPPUPORN 9

MD v1.0.0 25/05/2021

Java | Page 1

SYNTAXE DE BASE

L'objectif de Java est généralement :

1) Effectuer un traitement (calculs, chargement de fichiers ou de données...).
2) Afficher le résultat du traitement dans le flux de sortie.

/"\ Une instruction Java se termine toujours par un point-virgule ;

L'instruction System.out.printin("texte a afficher") permet de déclencher un affichage dans le flux de sortie :

public static void main(String[] args)
{

System.out.println({"Hello world!"};
)

Le texte situé entre les guillemets sera affiché dans le flux de sortie.

Un texte situé entre des guillemets est une chaine de caractéres ou String.

VARIABLES

Une variable est un symbole qui permet de stocker une valeur en mémoire.
Pour faire simple, un symbole est un nom de variable qui est un "raccourci" vers une valeur stockée en mémaoire.

En Java, les variables sont en camelCase et posséde un type (chaine de caractére, nombre etc...).

public static void main{String[] args)

{ String mavariable; // Déclaration d'une variable de type "String”
maVariable = "Hello World!™; // affectation d'une valeur & la variable
System.out.println{maVariable); // affiche "Hello world!™

}

Ci-dessus, La valeur "Hello Wolrd!" est stockée en mémoire dans la variable "maVariable" et il est possible d'y accéder a
nouveau en utilisant la variable (le symbole) associée, par exemple pour I'afficher.

POURQUOI "VARIABLE" ?

Comme son nom l'indique, la valeur d'une variable peut... varier dans le temps.

Tout au long de I'exécution du programme, la valeur des variables créées peut changer. Vous comprenez maintenant le nom .

public static void main(String[] args)

{ String maVariable; // Déclaration d'une variable de type "String”
maVariable = "Hello World!™; // affectation d'une valeur & la variable
System.out.println(mavariable); // affiche "Hello world!"
maVariable = "Welcoms."; // affectation d'une nouvelle valeur 3 la variable
System.out.println(mavVariable); // affiche "Welcome."

}

CQM_ Java | Page 1

Java | Page 2

TYPES DE VARIABLES

Une variable stocke une valeur d'un certain type. Un type représente le format de la donnée stockée.

Principaux types simples en Java :

Type Format Description Affichage avec System.out.printin()
Boolean Booléen 2 valeurs possibles : true ou false (vrai ou faux) Oui
int Nombre entier 32 bits | 1 nombre entier positif ou négatif Oui
float Nombre réel 32 bits 1 nombre a décimales positif ou négatif Oui
string Chaine de caractéres | Du texte, html, xml... Oui
long Nombre entier 64 bits | 1 nombre entier positif ou négatif Oui
double Nombre réel 64 bis 1 nombre a décimales positif ou négatif Oui
public static void main(String[] args)
{
5tring chaine = "Une chaine de caractéres"; // valeur entre double guillemets
Boolean vraiFaux = true; // true ou false
int nombre32bits = 42;
long nombre&dbits = 98123456789L; // L & la fin du nombre
float nombrefvirgule = 13.8123456789F; // F & la fin du nombre
double nombrefvirgulesdbits = 13.8123456789D; // D & la fin du nombre
System.out.println({chaine);
System.out.println(vraiFaux);
System.out.println{nombre32bits);
System.out.println(nombre&dbits);
System.out.println{nombreAvirgule);
System.out.println(nombrefvirgulesdbits);
}

Java est un langage dit fortement typé, le type de chaque variable est précisé a la déclaration.

Lorsqu'une variable est déclarée, elle ne peut contenir que des valeurs correspondant a son type.

CHAINES DE CARACTERES

Dans une application Console, et aprés avoir effectué ses différents traitements, un programme Java affichera généralement le
contenu de chaines de caractéres.

public static void main(String[] args)
1

System.out.println{"Hello world!");
j

CQM_ Java | Page 2

Java | Page 3
CONCATENATION
La concaténation désigne I'action de mettre bout a bout plusieurs chaines de caracteres.
Le principe est de séparer les différentes chaines de caractéres par I'opérateur de concaténation.

En Java, I'opérateur de concaténation est le caractére plus "+".

public static void main(String[] args)
{

String chaine = "Bonjour";

String chaine2 = "3 vous [";

System.out.println{chaine + " et bienvenue " + chainel);
}

Affiche "Bonjour et bienvenue a vous !"

LES EXPRESSIONS

Une expression est un segment de code effectuant un traitement et pouvant retourner une valeur.

int resultat = 3 + 23

Exemple d'expression simple

EXPRESSION BOOLEENNE

Une expression booléenne est une expression dont le résultat sera... une valeur booléenne (true ou false).
Une expression booléenne utilise les opérateurs de comparaison et les opérateurs logiques.

Opérateurs de comparaison :

Symbole Nom Exemple Signification
== est égal a a==>b La valeur de a est-elle égale a la valeur de b ?
I= est différent de al=>b La valeur de a est-elle différente de la valeur de b ?
< est strictement inférieur a a<b La valeur de a est-elle strictement inférieure a la valeur de b ?
<= est inférieur ou égal a a<=b La valeur de a est-elle inférieure ou égale a lavaleurde b ?
> est strictement supérieur a a>hb La valeur de a est-elle strictement supérieure a la valeur de b ?
>= est supérieur ou égal a as>b La valeur de a est-elle supérieure ou égale a la valeur de b ?
Opérateurs logiques :
Symbole Nom Exemple Signification
&& ET (a ==b) & (a > c) La valeur de a est-elle égale a la valeurde b ?
ET
La valeur de a est-elle supérieure a la valeur de ¢ ?
[ou (a==0b) || (a <c) La valeur de a est-elle égale a lavaleur de b ?
ou

La valeur de a est-elle inférieure a la valeur de ¢ ?

CQM_ Java | Page 3

Java | Page 4

Exemples d'expressions booléennes

int a = 1;
int b = 2;
int ¢ = 53

Boolean testl = (a < b); // wral
Boolean test2 = (a < b) && (a » ¢); // faux
Boolean test3 = (a < b) || (a » ¢); // vral

BLOC DE CODE

Un bloc de code est un ensemble d'instructions rassemblées entre accolades { }.
Un bloc de code peut étre considéré comme une expression complexe (contenant plusieurs instructions).

7 {
8 int a = 1;

2] int b = 2;

1@ int ¢ = 5;

11 }

12

13 Boolean testl = (a < b); // vral

14 Boolean test2 = (a < b) && (& » c); // faux
15 Boolean test3 = (a < b) || (a2 » ¢); // vrai

Les variables déclarées ne sont disponibles que dans le bloc de code dans lequel elles sont déclarées.

Dans la capture précédente, les variables a, b et c (lignes 8, 9 et 10) ne sont pas accessibles en dehors de leur bloc de code délimité
par les accolades dans lesquelles elles se trouvent (lignes 7 et 11). C'est pour cette raison que I'éditeur de code les souligne en
rouge (lignes 13, 14 et 15). Tenter d'exécuter ce programme résultera une erreur de compilation.

Les blocs de code sont généralement utilisés pour définir le code a exécuter aprés une instruction conditionnelle, une boucle ou
lors de I'appel d'une fonction.

CQM_ Java | Page 4

Java | Page 5

LES STRUCTURES CONDITIONNELLES

Une structure conditionnelle permet de définir quel bloc de code exécuter selon le résultat d'une expression booléenne.

IF / ELSE

int a
int b 2;

(]
[N
-

/** 51 a est supérieur 3 b

* ALORS
® ECRIRE &, " est supérieur 3 ", b
* SINON
® ECRIRE a, " est inférieur 3 ", b
* FIN S5I
*f
if{a » b) {
System.out.println{a + "est supérieur 3 " + b);
}
else {
System.out.println{a + "est inférieur 3 " + b);
}
IF / ELSEIF / ELSE
int a = 1;
int b = 2;

/** 51 a est supérieur 3 b

* ALORS

* ECRIRE a, " est supérieur 3 ", b

* SINON SI a est inférieur 3@ b

* ALORS

® ECRIRE a, " est inférieur 3 ", b

* SINOM

® ECRIRE a, " et ", b, " sont égaux”
* FIN SI

*f
if{a » b) {

System.out.println{a + "est supérieur 3 " + b);

b
else if{a < b) {

System.out.println{a + "est inférieur 3 " + b)};

h
else {

System.out.println(a + " et " + b + " sont égaux");
b

Le programme exécutera uniquement le bloc de code situé sous la condition qui renvoie "vrai" (true). Si aucune des conditions
ne renvoie "vrai", le bloc de code situé sous l'instruction else est exécuté.

Dans la capture précédente, un seul des 3 affichages sera déclenché. Cela dépendra de la valeur des variables a et b.

CQM_ Java | Page 5

Java | Page 6

SWITCH / CASE

L'instruction switch évalue une expression et, selon le résultat obtenu et le cas associé, exécute les instructions correspondantes.

int a = 1;
switch(a)
{
case 1:
System.out.println("Gagné, A est &gal 3 1");
break;
case 2:
System.out.println("Gagné, A est &gal 3 2");
break;
default:
System.out.println{"Perdu, A ne devrait pas &tre égal 3 " + a);
break;
}

La valeur de la variable a est évaluée.
Siavaut 1, le code sous le cas 1 (case 1) est exécuté.
L'instruction break qui suit permet de de sortir du bloc switch courant aprés exécution du cas 1.

C'est-a-dire que si le cas 1 est exécuté, les autres cas seront ignorés.

Si avaut 2, le code sous le cas 1 est ignoré et le code du cas 2 est exécuté.

Si la valeur de a ne correspondant a aucun cas, le cas par défaut (default) est exécuté.

/\ Pour les structures conditionnelles, prévoyez toujours un cas par défaut :

- else pour les instructions if/elseif/else.
- default pour les instructions switch/case.

LES STRUCTURES REPETITIVES

Une structure répétitive (boucle) permet d'exécuter un bloc d'instructions plusieurs fois.

Il existe 3 boucles principales qui fonctionnent exactement de la méme maniére dans a peu prés tous les langages de
programmation :

e while : TANT QUE
e do... while : FAIRE ... TANT QUE
e for : POUR

Une 4% boucle existe dans de nombreux langages, il s'agit de la boucle foreach (POUR CHAQUE). Cependant, sa syntaxe est trés
différente selon le langage utilisé.

CQM_ Java | Page 6

Java | Page 7

WHILE

while (boolean) {
A Code 4 exécuter dans La boucle

Le code est exécuté tant que le booléen est vrai. Si avant l'instruction while, le booléen est faux, alors le code de la boucle ne
sera jamais exécuté.
La boucle while est utilisée lorsque I’on ne connait pas a I'avance le nombre exact de fois que la boucle devra s'exécuter.

int a = 1;

while(a < 18) {
System.out.println{a);
a++; // incrémentation de a

/"\ Vous devez vous assurez que votre programme sortira de la boucle a un moment donné. Si tel n'est pas le cas, le
programme restera "coincé" dans cette boucle infinie et finira par planter.

DO ... WHILE

do {
A Co

1 while

a exécuter dans La boucle

de
(boolean);

La boucle do...while est une variante de la boucle while. Sa particularité réside dans le fait que la condition est testée apreés la
premiere exécution de la boucle. Le code est exécuté tant que la condition est satisfaite et est exécuté au moins une fois.

int a = 18;

do {

System.out.println(a);

at++; // incrémentation de a
h

while(a < 18);

/\ Tout comme pour la boucle while, Vous devez vous assurez que votre programme sortira de la boucle a un moment donné.
Si tel n'est pas le cas, le programme restera "coincé" dans cette boucle infinie et finira par planter.

FOR

for (initialisation; condition; modification) {

... A Code @ exécuter dans La boucle

La boucle for teste une condition et exécute le bloc de code rattaché a la boucle tant que la condition est remplie.
La boucle for est le plus utilisée lorsque I’on sait combien de fois on souhaite exécuter le bloc de code rattaché a la boucle.

int i;

for(i =8; 1 < 18; i++) {
System.out.println{i);

Java | Page 7

v

Java | Page 8

FONCTIONNEMENT DU FOR

Une boucle for posséde 3 paramétres :

e un point de départ
e une condition
e changer le départ

FOR (point de départ ; Condition ; Changer le départ){

CODE..............

Dans le code précédent,

int i;

fordi = ef [1 < 16 i+s) {
System.out.println(i);

Le point de départ est la valeur de la variable i, soit 0.

La valeur de i est inférieure a 10, on exécute donc le bloc de code rattaché au for

puis i est incrémenté de 1, et on recommence.

i vaut désormais 1 et la boucle continue tant que la condition "i est inférieure a 10" est remplie.

el

On pourrait remplacer ce for par une boucle while :

i est un entier
i<o

Tant que i est inférieur a 10

Afficher i
Incrémenter i

Fin Tant que

Soit en Java:

int i; int 1 = 8;

while(i < 18) {
System.out.println(i);
i++;

for{i =8; 1 < 18; i++) {
System.out.println{i);

Ces 2 boucles effectuent le méme traitement

v

Java | Page 8

Java | Page 9

LES TABLEAUX

Un tableau est une collection de valeurs. La ol une variable stocke 1 valeur, une collection permet d'en stocker plusieurs.

Un tableau stocke toujours des valeurs de méme type.

On parlera alors de "tableau de chaines de caractéres"”, "tableau d'entiers ", etc...

Pour déclarer un tableau, on indique le type du tableau suivi de 2 crochets [].

La taille d'un tableau est fixe et définie a sa déclaration. Elle n'est ensuite plus modifiable (sauf en recréant le tableau).
La taille d'un tableau détermine le nombre d'éléments qu'il contient.

Pour lire ou écrire dans une "case" du tableau, on utilise son indice qui représente le numéro de la case du tableau ou se trouve
une valeur. La 1% case porte le n°0, la 2°™ le n°1 etc... jusqu'a |la longueur du tableau. Ainsi, un tableau de 10 éléments
contiendra des cases numérotées de 0 3 9 (0 étant la 1¥© et 9 la derniére).

Element
First index (at index 8)

E123456?39—Indh:es

<« Amaylength s 10 ————

Exemple en Java :

// Déclaration d'un tableau de chaines de caractéres
/{ Le tableau contient 3 élements (vides par défaut).

String[] tableau = naw String[3];
tableau[@] "Bleu"; // ler élement du tableau

tableau[1] = "Vert"; // 2&me élement du tableau
tableau[2] = "Jaune™; // 3éme élement du tableau

System.out.println(tableau[1]); // affiche le 2&me élément soit "Vert"

Il est également possible déclarer les éléments du tableau en méme temps que le tableau lui-méme.
Sa longueur sera alors définie selon le nombre d'éléments déclarés.

/f Déclaration d'un tableau de chalnes de caractéres
// Le tableau contient 3 é€lements déclarés 3 1'initialisation.

String[] tableau = new String[] { "Bleu", "Vert", "Jaune" };

System.out.println(tableau[1]}; // affiche le 2&me élément soit "Vert"

Vous connaissez désormais la syntaxe de base du langage Java. Entrainez-vous avec quelques exercices d'algorithmes @

--- FIN DU DOCUMENT ---

Java | Page 9

v

