14/02/2023

Conception & Développement Informatique M

APPRENDRE LES BASES DE L’OBJET 2 =

TYPE : APPRENTISSAGE / TRAVAUX PRATIQUES CENTRE DE READAPTATION
MULHOUSE

Rééducation et Formation Professionnelle

La programmation orientée objet en Java

Partie 1 Les bases

SETUCTUIE 8 DS ...ttt et e et e sa bt e e ab e e s a bt e eab e e sa bt e e as e e sa bt e e abeesa bt e e ab e e sab e e eabeesabeeeabeesabeesabeesabeennneess 2
[IEE ol 0 L3 ¥ ot =T U PP PPRRP 3
ACCESSEUIS B IMIUTATEUIS L..eiiiiiiiiiiiiic bbb s b e e s b b e e e s b b et et b b e e s s ba e e s s bb e e e seabae e s sabaeeeeas 8
LES Variables 0@ ClasSES.......iiiiiiiiieieee et ettt s e e s sae e a e saeen e eaneen 14
[l oY gl ool oY=l o M =T oo 1Y U1 -1 4o o [R SUURRRP 16

MEISTERTZHEIM Adeline

La programmation orientée objet en Java | Page 2

STRUCTURE DE BASE

Les exemples de codes de ce cours utiliseront le diagramme de classe suivant :

= Ville

-nomVille - String
-nomPays - String
-nbHakbitants - int

-categories © char

-nbinstances : int =static=
-nbinstancesBis : int =static=

+Ville()
+Ville(String pMom, int nbre, String pMomPays)

+getMom() - String

+getMomPays() ; String
+getMbHabitants() : int

+setMom(String pMom) - Void
+setMomPays(String pMomPays) : Void
+setMbHabitants(int nbre): Void

+getCategorie() . char
+setCategoariel) © Void

+decrisToi() : String
+comparer(Ville w1) : Sfring

Une classe peut étre comparée a un moule qui, lorsque nous le remplissons, nous donne un objet ayant la
forme du moule ainsi que toutes ses caractéristiques.

Pour créer une classe allez dans File > New > Class ou utilisez le raccourci dans la barre d'outils, comme sur
la figure suivante :

=~ et 0% Q- H|EG-|S -

Nommez votre classe « Ville » (avec un « V » majuscule, convention de nommage oblige).
Vous devriez avoir le rendu de la figure suivante :

Villejava >
g

package cours_wville;

public class Ville {

h

1
2
3
4
5
B
7

La classe Ville est précédée du mot clé public, qui correspond a la portée de la classe. En programmation, la
portée détermine qui peut faire appel a une classe, une méthode ou une variable. Vous avez déja
rencontré la portée public : cela signifie que tout le monde peut faire appel a I'élément. Ici dans le cas qui
nous intéresse il s'agit d'une méthode. Une méthode marquée comme public peut donc étre appelée
depuis n'importe quel endroit du programme.

c 2 M La programmation orientée objet en Java | Page 2

La programmation orientée objet en Java | Page 3

Nous allons ici utiliser une autre portée : private. Elle signifie que notre méthode ne pourra étre appelée
qgue depuis l'intérieur de la classe dans laquelle elle se trouve ! Les méthodes déclarées private
correspondent souvent a des mécanismes internes a une classe que les développeurs souhaitent « cacher
» ou simplement ne pas rendre accessibles de I'extérieur de la classe...

Il en va de méme pour les variables. Nous allons voir que nous pouvons protéger des variables grace au
mot clé private. Le principe sera le méme que pour les méthodes. Ces variables ne seront alors accessibles
gue dans la classe ou elles seront nées...

LES CONSTRUCTEURS

Vu que notre objectif dans ce cours est de construire un objet Ville, il va falloir définir les données qu'on va
lui attribuer. Nous dirons qu'un objet Ville posséde :

e Un nom, sous la forme d'une chaine de caractéres ;

e Un nombre d'habitants, sous la forme d'un entier ;

e Un pays apparenté, sous la forme d'une chaine de caracteres.
Nous allons faire ceci en mettant des variables d'instance (de simples variables identiques a celles que vous
manipulez habituellement) dans notre classe. Celle-ci va contenir une variable dont le réle sera de stocker
le nom, une autre stockera le nombre d'habitants et |la derniére se chargera du pays ! Voici a quoi
ressemble notre classe Ville a présent :

“Willzjava
d|

package cours_wille;
public class ville {
String nomVille;

String nomPays;
int nbHabitants;

= IS [y T ¥ I N WY % I S

(s3]

Contrairement aux classes, les variables d'instance présentes dans une classe sont public si vous ne leur
spécifiez pas de portée. Alors, on parle de variable d'instance, parce que dans nos futures classes Java qui
définiront des objets, il y aura plusieurs types de variables (nous approfondirons ceci dans ce cours). Pour
le moment, sachez qu'il y a trois grands types de variables dans une classe objet :

e Lesvariables d'instance : ce sont elles qui définiront les caractéristiques de notre objet.

e Les variables de classe : celles-ci sont communes a toutes les instances de votre classe.

e Lesvariables locales : ce sont des variables que nous utiliserons pour travailler dans notre objet.
Dans l'immédiat, nous allons travailler avec des variables d'instance afin de créer des objets différents. Il ne
nous reste plus qu'a créer notre premier objet, pour ce faire, nous allons devoir utiliser ce qu'on appelle
des constructeurs.

Un constructeur est une méthode d'instance qui va se charger de créer un objet et, le cas échéant,
d'initialiser ses variables de classe ! Cette méthode a pour réle de signaler a la JVM (Java Virtual Machine)
gu'il faut réserver de la mémoire pour notre futur objet et donc, par extension, d'en réserver pour toutes
ses variables.

c 2 M La programmation orientée objet en Java | Page 3

La programmation orientée objet en Java | Page 4

Notre premier constructeur sera ce qu'on appelle communément un constructeur par défaut, c'est-a-dire
gu'il ne prendra aucun parametre, mais permettra tout de méme d'instancier un objet, et vu que nous
sommes perfectionnistes, nous allons y initialiser nos variables d'instance. Voici votre premier constructeur

3 public class Ville {

5 " stocke le nom de la wille

6 string nomville;

7 '/ stocke le nom du pays de la wille

8 string nomPays;

g '/ stock le nembre d'habitant de la ville
1@ int nbHabitants;
12 Jf constructeur par defaut
135 public ville()
14 i
15 System.out.println("Création d'une ville par defaut™);
16 nomvVille = "inconnu™;
17 nomPays = “"inconnu”;
18 nbHabhitants = @;
19 H
28 }
21

Vous avez remarqué que le constructeur est en fait une méthode qui n'a aucun type de retour (void,
double...) et qui porte le méme nom que notre classe ! Ceci est une régle immuable : le (les)
constructeur(s) d'une classe doit (doivent) porter le méme nom que la classe !

Son corollaire est qu'un objet peut avoir plusieurs constructeurs. Il s'agit de la méme méthode, mais
surchargée | Dans notre premier constructeur, nous n'avons passé aucun parameétre, mais nous allons
bientdt en mettre.

Vous pouvez d'ores et déja créer une instance de Ville. Cependant, commencez par vous rappeler qu'une
instance d'objet se fait grace au mot clé new, comme lorsque vous créez une variable de type String.

Maintenant, vu que nous allons créer des objets Ville, nous allons procéder comme avec les String.
Vérifions que l'instanciation s’effectue comme il faut. Allons dans notre classe contenant la méthode main
et instancions un objet Ville. Je suppose que vous avez deviné que le type de notre objet sera Ville !

3 public class App {

;— public static woid main(String[] args) {
E ville ville = new Ville();

e }

c 2 M La programmation orientée objet en Java | Page 4

La programmation orientée objet en Java | Page 5

Exécutez ce code, vous devriez avoir I'équivalent de la figure suivante sous les yeux :

[J] Villejava _,'_Jj Lppjava

package cours_wville;

d ka2

public class App {

= public static woid main{String[] args) 1

Ville ville = new Wille();

oa

. Problems @& Javadoc |3;.L Declaration B Console

<terminated= App (2] [Java Application] C:\Program FileshJava'jdk-19]
Creation d'une ville par defaut

Maintenant, nous devons mettre des données dans notre objet, ceci afin de pouvoir commencer a
travailler... Le but sera de parvenir a une déclaration d'objet se faisant comme ceci :

16 Ville villel = new Ville("Marseille™, 123456789, “"France");
10 1

Vous avez remarqué qu'ici, les parametres sont renseignés : eh bien il suffit de créer une méthode qui

récupére ces parametres et initialise les variables de notre objet, ce qui achévera notre constructeur
d'initialisation.

c 2 M La programmation orientée objet en Java | Page 5

La programmation orientée objet en Java | Page 6

Voici le constructeur de notre objet Ville, celui qui permet d'avoir des objets avec des parametres
différents :

3 public class Ville {
5 £ stocke le nom de la wille
6 String nomville;
7 £l ostocke le nom du pays de la wille
8 String nomPays;
9 ff stock le nombre d'habitant de la wille
1@ int nbHabitants;
12 £ constructeur par defaut
3= public ville()
14 1
15 System.out.println{"Creaticn d'une ville par defaut™);
165 nomiille = "inconnu™;
17 noemPays = "inconnu™;
15 nbHabhitants = @;
9 }

3]

// constructeur avec parameires

K

21

22 ff1'al ajoutd un << p x> en 1lére lettre des paramétres

23 /f ce n'est pas yne convention, mais ¢a@ peut &tre un bon moyens de les repérer.
242 public Ville(String pNom, int nbre, String pNomPays)

b5 {

26 System.out.println{"Creation d'une wille awvec des parametres");
27 nomville = pNom;

25 nomPays = plomPays;

29 nbHabitants = nbre;

&l 1

&

&

dRa

Dans ce cas, I'exemple de déclaration et d'initialisation d'un objet Ville que je vous ai montré un peu plus
haut fonctionne sans aucun souci | Mais il vous faudra respecter scrupuleusement |'ordre des parameétres
passés lors de l'initialisation de votre objet : sinon, c'est I'erreur de compilation a coup sar !

Cependant, notre objet présente un gros défaut : les variables d'instance qui le caractérisent sont
accessibles dans votre classe contenant votre main ! Ceci implique que vous pouvez directement modifier
les attributs de la classe. Testez ce code et vous verrez que le résultat est identique a la figure suivante :

public static void main(String[] args) {

Ville wille = new Ville();
System.out.println(ville.nomville);

ville.nomVille = "Monaco";
System.out.println{ville.nomville};

Ville willel = new Ville(“"Marseille"™, 123456789, “"France");
villel.nomPays = "Portugal”;
System.out.println(villel.nomPays);

|,"_ Problems @@ Javadoc |'_{,=:‘1J Declaration & Console

<terminated> App (2) [Java Application] C\Program Files\Java'jdk
Creation d'une ville par defaut

inconnu

Monaco

Creation d'une ville avec des parametres

Portugal

c 2 M La programmation orientée objet en Java | Page 6

La programmation orientée objet en Java | Page 7

Vous constatez que nous pouvons accéder aux variables d'instance en utilisant le « . », comme lorsque
vous appelez la méthode subString() de I'objet String. C'est trés risqué, et la plupart des programmeurs
Java vous le diront. Dans la majorité des cas, nous allons contréler les modifications des variables de classe,
de maniére qu'un code extérieur ne fasse pas n'importe quoi avec nos objets ! En plus de ¢a, imaginez que
vous souhaitiez faire quelque chose a chaque fois qu'une valeur change ; si vous ne protégez pas vos
données, ce sera impossible a réaliser... C'est pour cela que nous protégeons nos variables d'instance en les
déclarant private, comme ceci :

public class Ville {

private String nomVille;
private String nomPavs;
private int nbHabitants;

Désormais, ces attributs ne sont plus accessibles en dehors de la classe ou ils sont déclarés ! Nous allons
maintenant voir comment accéder tout de méme a nos données.

c QM La programmation orientée objet en Java | Page 7

La programmation orientée objet en Java | Page 8

ACCESSEURS ET MUTATEURS

Un accesseur est une méthode qui va nous permettre d'accéder aux variables de nos objets en lecture, et
un mutateur nous permettra d'en faire de méme en écriture ! Grace aux accesseurs, vous pourrez afficher
les variables de vos objets, et grace aux mutateurs, vous pourrez les modifier :

:..' :..' FEkEkkkEkkkd aArrECor||RG FkEFFkkEkkkdkkdkdkk

public String getNom()

1

b

// Retourns le nom du pays
public String getNomPays()

1

i

// Retourne le nombre d'habitant
public int getNbHabitants()

1

i

:|.':|.':-::-::-::-::-::-::-::-::-::-: II|UTJ:'TELIRS e e o ohe e o o ke ke o ok okt o ko ke

return nomville;

return nomPays;

return nbHabitants;

public void setNom(String phom)

1

¥

/1 Definit le nom du pays

public void setNomPays(5tring pNomPays)
1

¥

// DEFinit le nombre d'habitant

public void setNbHabitants(int nbre)

1
¥

nomyille = phom;

nomPays = pMNomPays;

nbHabitants = nhre;

Nos accesseurs sont bien des méthodes, et elles sont public pour que vous puissiez y accéder depuis une
autre classe que celle-ci : depuis le main, par exemple. Les accesseurs sont du méme type que la variable
gu'ils doivent retourner. Les mutateurs sont, cependant, de type void. Ce mot clé signifie « rien » ; en effet,
ces méthodes ne retournent aucune valeur, elles se contentent de les mettre a jour.

Je vous ai fait faire la différence entre accesseurs et mutateurs, mais généralement, lorsqu'on parle
d'accesseurs, ce terme inclut également les mutateurs. Autre chose : il s'agit ici d'une question de
convention de nommage. Les accesseurs commencent par get et les mutateurs par set, comme vous
pouvez le voir ici. On parle d'ailleurs parfois de Getters et de Setters.

c 2 M La programmation orientée objet en Java | Page 8

La programmation orientée objet en Java | Page 9

A présent, essayez ce code dans votre méthode main :

public static woid main{String[] args) {

Ville ville = new Ville();
Ville villel = new Ville("Marseille", 878321, "France");
Ville ville2 = new Ville("Mulhouse", 188838, "France");

System.out.println("\n ville = "4ville.getNom()+" wville de “+ville.getNbHabitants()
+" habitant(s) se situant en “"4ville.getNomPays());
System.out.println(" willel = "4+villel.getNom()+" wille de “"+villel.getNbHabitants()
+" habitant(s) se situant en “"+villel.getNomPays());
System.out.println(™ ville2 = "+ville2.getNom()+" ville de "+ville2.getNbHabitants()
+" habitant(s) se situant en "+ville2.getNomPays(}+"\nin"});
MNous allons interchanger les willes 1 et 2
tout ¢a par l'intermédiaire d'une guire chijst ville
Ville temp = new Wille();
temp = villel;
villel = wille2;
ville2 = temp;
System.out.println{” villel = "+villel.getMom()+" ville de "+villel.getNbHabitants()
+" habitant({s) se situant en "+villel.getMomPays());
System.out.println(" wille2 = "+ville2,getNom()+" wille de “"+villeZ.getNbHabitants()
+" habitant(s) se situant en "+ville2.getNomPays()+"\nin");
Mous allens maintenant interchanger leur noms
par le biais de leurs mutateurs
villel.setMom("Honk Kong");
ville2. setMom("New York");
System.out.println(" willel = "+villel.getNom()+" wille de “"+villel.getNbHabitants()
+" habitant(s) se situant en “"+villel.getNomPays());
System.out.println(" wville2 = "+ville2.getNom()+" wille de “"+ville2.getNbHabitants()
+" habitant(s) se situant en "4ville2.getNomPays()+"\n'n");

A la compilation, vous devriez obtenir la figure suivante :

. | . | T = - s

Creation d'une ville par defau
Creation d'une ville avec des parametres
Creation d'une ville avec des parametres

ville = inconnu ville de @ habitant(s) se situant en inconnu
villel = Marseille wille de 878321 habitant(s) se situant en France
ville2 = Mulhouse wille de 188838 habitant(s) se situant en France

Creation d'une ville par defaut
villel = Mulhouse wille de 188838 habitant(s) se situant en France
ville2 = Marseille wville de 878321 habitant(s) se situant en France

villel = Honk Kong wille de 188838 habitant(s) se situant en France
ville2 = New York ville de 878321 habitant(s) se situant en France

c 2 M La programmation orientée objet en Java | Page 9

La programmation orientée objet en Java | Page 10

Vous voyez bien que les constructeurs ont fonctionné, que les accesseurs tournent a merveille et que vous
pouvez commencer a travailler avec vos objets Ville. Cependant, pour afficher le contenu, on pourrait faire
plus simple, comme par exemple créer une méthode qui se chargerait de faire tout ceci... Je sais ce que
vous vous dites : « Mais les accesseurs, ce ne sont pas des méthodes ? ». Bien slr que si, mais il vaut mieux
bien distinguer les différents types de méthodes dans un objet :
e Les constructeurs -> méthodes servant a créer des objets ;
e Les accesseurs -> méthodes servant a accéder aux données des objets ;
e Les méthodes d'instance - méthodes servant a la gestion des objets.
Avec nos objets Ville, notre choix est un peu limité par le nombre de méthodes possibles, mais nous
pouvons tout de méme en faire une ou deux pour I'exemple :
e Faire un systéme de catégories de villes par rapport a leur nombre d'habitants (<1000 -> A, <10 000
-> B...). Ceci est déterminé a la construction ou a la redéfinition du nombre d'habitants : ajoutons
donc une variable d'instance de type char a notre classe et appelons-la categorie. Pensez a ajouter
le traitement aux bons endroits ;
e Faire une méthode de description de notre objet Ville ;
¢ Une méthode pour comparer deux objets par rapport a leur nombre d'habitants.
Nous voulons que la classe Ville gére la facon de déterminer la catégorie elle-méme, et non que cette
action puisse étre opérée de l'extérieur. La méthode qui fera ceci sera donc déclarée private.
Cependant, un probléme va se poser | Vous savez déja qu'en Java, on appelle les méthodes d'un objet
comme ceci : monString.subString(0,4);. Cependant, vu qu'il va falloir qu'on travaille depuis I'intérieur de
notre objet, vous allez encore avoir un mot clé a retenir... Cette fois, il s'agit du mot clé this. Voici tout
d'abord le code de notre classe Ville en entier, c'est-a-dire comportant les méthodes dont on vient de
parler :

1 package cours_ville;

2

3 public class ville {

5

6 private String nomVille;

7 private String nomPays;

g private int nbHabitants;

g private char categories;

[

2 Joconstructeur par defaut

3= public ville()

14 {

5 system.out.println{"Creation d'une ville par defaut™);
I3 nomville = "inconnu”;

iy nomPays = “inconnu™;

I nbHabitants = 8;

] this.setcategorie();

D }

21

2

3 ! constructeur avec parameires

P 4= public Ville(String phom, imt nbre, String pMomPays)
S 7

P& System.out.println("Creaticn d'une ville avec des parametres™);
Py nomville = phom;

25 nomPays = plomPays;

2) nbHabitants = nhre;

&z this.setcategorie();

il 1

c QM La programmation orientée objet en Java | Page 10

La programmation orientée objet en Java | Page 11

;i ff********* ACCESSEURS EEE L R R L L E L L
34

35 /7 retourns le nom de la ville
3BE public String getMom()

37 {

38 return nomyVille;

39 }

48

41 // Betourns le nom du pays

42= public String getMomPays()

43 {

e return nomPays;

45 }

4a

47 /f Retourne le nombre d'habitant
48= public imt getNbHabitants()

49 !

5@ return nhHabitants;

51 3

52

53 // Retourne la categorie

Sz public char getCategories()

55 {

56 return categories;

57 1

58

59 ll,-",-'********** I“ILIT.I'-“.TEUR.S LR E LA E L E R
68

61 // Definit le nom de la wille
622 public woid setNom(String pHom)
63 {

64 nomyille = phom;

65 1

66

67 // Définit le nom du pays

BBE public woid setNomPays(String pNomPays)
69 {

78 nomPays = plomPays;

71 1

72

73 /f DEfinit le nombre d'habitant
F4E public weid setNbHabitants(int nbre)
75 {

76 nbHabitants = nbre;

77 this.setcategorie();

78 1

i)

c 2 M La programmation orientée objet en Java | Page 11

La programmation orientée objet en Java | Page 12

ge A Refinit la categorie de la ville

B1C private void setcategorie()

82 !

83 int bornesSuperieurs [] = {8, 1000, 10000, 100000, 500000, 1000000, SPO000R, 100O00E0);
24 char categories [] =4{"?"', "A', 'B', 'C", 'D', "E', "F', "G', 'H'};
85

86 int i = @;

a7

88 while(i < bornesSuperieurs.length && this.nbHabitants > bornesSuperieurs[i])
89 {

@ i++;

91 }

92 this.categories = categories[i];

93 }

o4

o5 ff Retourne la description de la wville

96c public S5tring decrisToi()

97 !

93 return "\t"+this.nomVille+" est une ville de ™

99 +this.nomPays

1 &6 +" elle comporte @ "

181 +this.nbHabitants

182 +" habitant(s) =» elle est donc de categordie @ "
183 +this.categories;

64 }

L85

186 A Retourne une chaine de caractéres selon le résulitat de la comparaison
187 public 5tring comparer(Ville wl)

108 {

1 &9 String str = new String();

1@

111 if(vl.getNbHabitants() > this.nbHabitants)

112 {

113 str = vl.getNom()+" est plus peuplée que "+this.nomVille;
114 }

115 else

116 {

117 str = this.nomVille+" est plus peuplée que "+vl.getNom();
118 }

119

126 return str}

121 1

e £

Pour simplifier, this fait référence a I'objet courant ! Bien que la traduction anglaise exacte soit « ceci », il
faut comprendre « moi ». A l'intérieur d'un objet, ce mot clé permet de désigner une de ses variables ou
une de ses méthodes.

Pour expliciter le fonctionnement du mot clé this, prenons I'exemple de la méthode comparer(Ville V1). La
méthode va s'utiliser comme suit :

Ville willel
Ville wille2

new Ville("Marseille", 878321, "France");
new Ville("Mulhcuse™, 188838, "France");

villel.comparer(ville2);

c 2 M La programmation orientée objet en Java | Page 12

La programmation orientée objet en Java | Page 13

Dans cette méthode, nous voulons comparer le nombre d'habitants de chacun des deux objets Ville. Pour
accéder a la variable nbHabitants de I'objet ville2, il suffit d'utiliser la syntaxe ville2.getNbHabitants() ; nous
ferons donc référence a la propriété nbHabitants de I'objet ville2. Mais |'objet villel, lui, est 'objet
appelant de cette méthode. Pour se servir de ses propres variables, on utilise alors this.nbHabitants, ce qui
a pour effet de faire appel a la variable nbHabitants de I'objet exécutant la méthode comparer(Ville v1).
Explicitons un peu les trois méthodes qui ont été décrites précédemment.

La méthode setCategorie()

Elle ne prend aucun parametre, et ne renvoie rien : elle se contente de mettre la variable de

classe categories a jour. Elle détermine dans quelle tranche se trouve la ville grace au nombre d'habitants
de I'objet appelant, obtenu au moyen du mot clé this. Selon le nombre d'habitants, le caractere renvoyé
changera. Nous |'appelons lorsque nous construisons un objet Ville (que ce soit avec ou sans paramétre),
mais aussi lorsque nous redéfinissons le nombre d'habitants : de cette maniére, la catégorie est
automatiquement mise a jour, sans qu'on ait besoin de faire appel a la méthode.

La méthode decrisToi()

Celle-ci nous renvoie un objet de type String. Elle fait référence aux variables qui composent I'objet
appelant la méthode, toujours grace a this, et nous renvoie donc une chaine de caractéres qui nous décrit
I'objet en énumérant ses composants.

La méthode comparer(Ville V1)

Elle prend une ville en paramétre, pour pouvoir comparer les variables nbHabitants de I'objet appelant la
méthode et de celui passé en paramétre pour nous dire quelle ville est la plus peuplée ! Et si nous faisions
un petit test ?

Ville wille = new Ville();
Ville wvillel new Ville("Marseille", 878321, "France");
ville wville2 new Ville("Mulhouse", 188835, "France");

System.out.println{"\n\n"+villel.decrisToi());
System.out.println{ville.decrisToi());
System.out.println{ville2.decrisToi()+ "\n'n"};
system.out.println{villel. comparer(ville2));

Ce qui devrait donner le résultat de la figure suivante :

Marseille est une wville de France elle comporte : 878321 habitant(s) =» elle est donc de categorie : E
inconnu est une wille de inconnu elle comporte : @ habitant(s) =» elle est donc de categorie : ?
Mulhouse est une ville de France elle comporte : 188833 habitant(s) =» elle est donc de categorie : D

Marseille est plus peuplee que Mulhouse

c QM La programmation orientée objet en Java | Page 13

La programmation orientée objet en Java | Page 14

LES VARIABLES DE CLASSES

Il'y a plusieurs types de variables dans une classe. Nous avons vu les variables d'instance qui forment la
carte d'identité d'un objet ; maintenant, voici les variables de classe.

Celles-ci peuvent s'avérer tres utiles. Dans notre exemple, nous allons compter le nombre d'instances de
notre classe Ville, mais nous pourrions les utiliser pour bien d'autres choses (un taux de TVA dans une
classe qui calcule le prix TTC, par exemple).

La particularité de ce type de variable, c'est qu'elles seront communes a toutes les instances de la classe !
Créons sans plus attendre notre compteur d'instances. Il s'agira d'une variable de type int que nous
appellerons nblnstance, et qui sera public ; nous mettrons aussi son homologue en private en place et
I'appellerons nbinstanceBis (il sera nécessaire de mettre un accesseur en place pour cette variable). Afin
gu'une variable soit une variable de classe, elle doit étre précédée du mot clé static. Cela donnerait dans
notre classe Ville :

J les attributs

private String nomVille;

private String nomPays;

private int nbHabitants;

private char categories;

fivariable publigque gqui compte les instances
public static int mbInstances = 8;
Jfvariable priwvée gqui compte les instances
private static int nbInstancesBis = 8;

// constructeur par defaut
pub]lc Ville()
1
system.out.println{"Creation d'une ville par defaut™);
nomville = "inconnu™;
nomPays = "inconnu";
nbHabitants = 8;
this.setcategorie();
// on incremente les variables & chague appel du constructeur
nbInstances++;
nbInstancesBis++;
¥
// constructeur avec parameires
pub]lc Ville(String pNom, int nbre, String pNomPays)
1
System.out.println{"Creation d'une ville avec des parametres");
nomvVille = pNom;
nomPays = plomPays;
nbHabitants = nbre;
this.setcategorie();
// on incremente les variables a chague appel du constructeur
nbInstances++;
nbInstancesBis++;
¥
e
£/ retourne le nombre d'instance
public static int getNbInstances()
1
return nbInstoncesBis;
¥

c 2 M La programmation orientée objet en Java | Page 14

La programmation orientée objet en Java | Page 15

Vous avez dii remarquer que l'accesseur de notre variable de classe déclarée privée est aussi

déclaré static : ceci est une régle ! Toutes les méthodes de classe n'utilisant que des variables de classe
doivent étre déclarées static. On les appelle des méthodes de classe, car il n'y en a qu'une pour toutes vos
instances. Cependant ce n’est plus une méthode de classe si celle-ci utilise des variables d'instance en plus
de variables de classe...

A présent, si vous testez le code suivant, vous allez constater I'utilité des variables de classe :

Ville ville = new Ville();

System.out.println{"Le nombre d'instances de la classe Ville
System.out.println("Le nembre d'instances de la classe Ville
Ville villel = new Wille("Marseille", 878321, "France");
System.owt.println("Le nembre d'instances de la classe Ville est : "+villel.nbInstances);
System.owt.println("Le nembre d'instances de la classe Ville est : "+villel.getWbInstances());
Ville wille2 = new Ville("Mulhouse", 188838, "France");
System.out.println{"Le nombre d'instances de la classe Ville
System.out.println{"Le nombre d'instances de la classe Ville

"+ville.nbInstances);
"+yille.getNbInstances(1);

"+ville2.nbInstances);
"+yille2 . getNbInstances());

Le résultat, visible a la figure suivante, montre que le nombre augmente a chaque instanciation.

(2 Problems @ Javadoc [&), Declaration EJ Console

<terrinated> App (2] [Java Application] C\Program Files\Java'jdk-
Creation d'une ville par defaut

Le nombre d'instances de la classe Ville est : 1

Le nombre d'instances de la classe Ville est @ 1
Creation d'une ville avec des parametres

Le nombre d'instances de la classe Ville est : 2

Le nombre d'instances de la classe Ville est : 2
Creation d'une ville avec des parametres

Le nombre d'instances de la classe Ville est @ 3

Le nombre d'instances de la classe Ville est @ 3

Lorsque vous avez vu les méthodes, vous les avez déclarées public. Vous auriez également pu les
déclarer private, mais attention, dans les deux cas, il faut aussi qu'elles soient static, car elles sont
exécutées dans un contexte static : la méthode main.

c 2 M La programmation orientée objet en Java | Page 15

La programmation orientée objet en Java | Page 16

LE PRINCIPE D’ENCAPSULATION

Voila, vous venez de construire votre premier objet « maison ». Cependant, sans le savoir, vous avez fait
plus que ¢a : vous avez créé un objet dont les variables sont protégées de |'extérieur. En effet, depuis
I'extérieur de la classe, elles ne sont accessibles que via les accesseurs et mutateurs que nous avons
définis. C'est le principe d'encapsulation !

En fait, lorsqu'on procéde de la sorte, on s'assure que le fonctionnement interne a I'objet est intégre, car
toute modification d'une donnée de I'objet est maitrisée. Nous avons développé des méthodes qui
s'assurent qu'on ne modifie pas n'importe comment les variables.

Prenons I'exemple de la variable nbHabitants. L'encapsuler nous permet, lors de son affectation, de
déduire automatiquement la catégorie de I'objet Ville, chose qui n'est pas facilement faisable sans
encapsulation. Par extension, si vous avez besoin d'effectuer des opérations déterminées lors de
I'affectation du nom d'une ville par exemple, vous n'aurez pas a passer en revue tous les codes source
utilisant I'objet Ville : vous n'aurez qu'a modifier I'objet (ou la méthode) en question, et le tour sera joué.
Si vous vous demandez I'utilité de tout cela, dites-vous que vous ne serez peut-étre pas seuls a développer
vos logiciels, et que les personnes utilisant vos classes n'ont pas a savoir ce qu'il s'y passe : seules les
fonctionnalités qui leurs sont offertes comptent. Java est souple parce qu'il offre beaucoup de
fonctionnalités pouvant étre retravaillées selon les besoins, mais gardez a I'esprit que certaines choses
vous seront volontairement inaccessibles, pour éviter que vous ne « cassiez » quelque chose.

¢ Une classe permet de définir des objets. Ceux-ci ont des attributs (variables d'instance) et des
méthodes (méthodes d’instance + accesseurs).

e Les objets permettent d'encapsuler du code et des données.

e Le oules constructeurs d'une classe doivent porter le méme nom que la classe et n'ont pas de type
de retour.

e L'ordre des parametres passés dans le constructeur doit étre respecté.

e Il est recommandé de déclarer ses variables d'instance private, pour les protéger d'une mauvaise
utilisation par le programmeur.

e On crée des accesseurs et mutateurs (méthodes getters et setters) pour permettre une
modification slire des variables d'instance.

e Dans une classe, on accede aux variables de celle-ci grace au mot clé this.

e Une variable de classe est une variable devant étre déclarée static.

e Les méthodes n'utilisant que des variables de classe doivent elles aussi étre déclarées static.

e Oninstancie un nouvel objet grace au mot clé new.

FIN DU DOCUMENT ---

c 2 M La programmation orientée objet en Java | Page 16

