Conception & Développement Informatique 2 M
APPRENDRE LES BASES DE L’OBJET ™
TYPE : APPRENTISSAGE / TRAVAUX PRATIQUES CENTRE DE READAPTATION
MULHOUSE

Rééducation et Formation Professionnelle

La programmation orientée objet en Java

Partie 2 L’héritage

CONTENU

1€ PrINCIPE A8 I'NEITTAZE ..ttt ettt ettt ettt e bt sate s bt e s bt e sbe e beeateeateeaeeeb e e beenbeeabesabesaeesheesbe e st enteeatesueesbeabeanbenn 1

MEISTERTZHEIM Adeline 15/02/2023

TITRE | Page 1

LE PRINCIPE DE L’"HERITAGE

La notion d'héritage est I'un des fondements de la programmation orientée objet.

Imaginons que, dans le programme réalisé dans la partie 1 (la classe VilleHeritage), nous voulions créer un
autre type d'objet : des objets Capitale. Ceux-ci ne seront rien d'autre que des objets VilleHeritage avec un
parametre en plus... disons un monument. Vous n'allez tout de méme pas recoder tout le contenu de la
classe VilleHeritage dans la nouvelle classe ! Déja, ce serait vraiment contraignant, mais en plus, si vous
aviez a modifier le fonctionnement de la catégorisation de nos objets VilleHeritage, vous auriez aussi a
effectuer la modification dans la nouvelle classe... Ce n'est pas terrible.

Heureusement, I'héritage permet a des objets de fonctionner de la méme facon que d'autres.

Grace a cette notion, nous pourrons créer des classes héritées (aussi appelées classes dérivées) de nos
classes meres (aussi appelées classes de base). Nous pourrons créer autant de classes dérivées, par rapport
a notre classe de base, que nous le souhaitons. De plus, nous pourrons nous servir d'une classe dérivée
comme d'une classe de base pour élaborer encore une autre classe dérivée.

Nous allons créer une nouvelle classe, nommeée Capitale, héritée de VilleHeritage. Vous vous rendrez vite
compte que les objets Capitale auront tous les attributs et toutes les méthodes associées aux

objets VilleHeritage !

package cours_wille;

public class Capitale extends VilleHeritage {

{95 [N WY T S

s]
et

C'est le mot clé extends qui informe Java que la classe Capitale est héritée de VilleHeritage. Pour vous le
prouver, essayez ce morceau de code dans votre main :

package cours_wville;

i R =

public class App {

s
I

public static wvoid main(String[] args) {

(s3]

wl

Capitale capitale = new Capitale();
System.out.println{capitale.decrisToi(});

WA
e

[xx]

b

Vous devriez avoir la figure suivante en guise de rendu :

|,'_ Problems @& Javadoc |_(,=El, Declaration &) Console | 3K %|

<terminated> App (2] [Java Application] C:\Program Files\Java'jdk-1%bin'javaw.exe (15 févr. 2023, 0%:24:25 - 09:24:27) [pid: 2680]
Inconnu est une wville de Inconnu, elle comporte @ habitant(s) => elle est donc de catBgorie : ?

CQM TITRE | Page 1

TITRE | Page 2

C'est bien la preuve que notre objet Capitale posséde les propriétés de notre objet VilleHeritage. Les objets
hérités peuvent accéder a toutes les méthodes public (ce n'est pas tout a fait vrai... Nous le verrons avec le
mot clé protected) de leur classe mére, dont la méthode decrisToi() dans le cas qui nous occupe.

En fait, lorsque vous déclarez une classe, si vous ne spécifiez pas de constructeur, le compilateur (le
programme qui transforme vos codes sources en byte code) créera, au moment de l'interprétation, le
constructeur par défaut. En revanche, dés que vous avez créé un constructeur, n'importe lequel, la JVM ne
crée plus le constructeur par défaut.

Notre classe Capitale hérite de la classe VilleHeritage, par conséquent, le constructeur de notre objet
appelle, de facon tacite, le constructeur de la classe meére. C'est pour cela que les variables d'instance ont
pu étre initialisées ! Cependant, essayez ceci dans votre classe :

package cours_wille;

ST

public class Capitale extends villeHeritage {

= public Capitale()

6 {

7 this.pnomyille = "Paris";
5 b

18 }

Vous allez avoir une belle erreur de compilation ! Dans notre classe Capitale, nous ne pouvons pas utiliser
directement les attributs de la classe VilleHeritage.

Pourquoi cela ? Tout simplement parce les variables de la classe VilleHeritage sont déclarées private. C'est
ici que le nouveau mot clé protected fait son entrée. En fait, seules les méthodes et les variables
déclarées public ou protected peuvent étre utilisées dans une classe héritée ; le compilateur rejette votre
demande lorsque vous tentez d'accéder a des ressources privées d'une classe mére !

Remplacer private par protected dans la déclaration de variables ou de méthodes de la

classe VilleHeritage aura pour effet de les protéger des utilisateurs de la classe tout en permettant aux
objets enfants d'y accéder. Donc, une fois les variables et méthodes privées de la classe mére déclarées
en protected, notre objet Capitale aura acces a celles-ci ! Ainsi, voici la déclaration de nos variables dans
notre classe VilleHeritage revue et corrigée :

package cours_wville;

L kg

public class VilleHeritage {

public static int nbInstances = @;
protected static int nbInstoncesBis = 8;
protected String nomville;

protected String nomPays;

protected int nbHabitants;

protected char categories;

o Gn

]

WoCa

= =]

CQM TITRE | Page 2

TITRE | Page 3

Notons un point important avant de continuer. Contrairement au C++, Java ne gere pas les héritages
multiples : une classe dérivée (aussi appelée classe fille) ne peut hériter que d'une seule classe mére ! Vous
n'aurez donc jamais ce genre de classe :

1 [fc;ass AgrafeuseBionigque extends AgrafeusefirComprime, AgrafeuseManuelle {

}

La raison est toute simple : si nous admettons que nos

classes AgrafeuseAirComprime et AgrafeuseManuelle ont toutes les deux une méthode agrafer() et que
vous ne redéfinissez pas cette méthode dans I'objet AgrafeuseBionique, la JVM ne saura pas quelle
méthode utiliser et, plutdt que de forcer le programmeur a gérer les cas d'erreur, les concepteurs du
langage ont préféré interdire I'héritage multiple.

A présent, continuons la construction de notre objet hérité : nous allons agrémenter notre classe Capitale.
Comme je vous l'avais dit, ce qui différenciera nos objets Capitale de nos objets Ville sera la présence d'un
nouveau champ : le nom d'un monument. Cela implique que nous devons créer un constructeur par défaut
et un constructeur d'initialisation pour notre objet Capitale.

Avant de foncer téte baissée, il faut que vous sachiez que nous pouvons faire appel aux variables de la
classe mére dans nos constructeurs grace au mot clé super. Cela aura pour effet de récupérer les éléments
de I'objet de base, et de les envoyer a notre objet hérité. Démonstration :

package cours wville;

public class Capitale extends VilleHeritage {

¥ 5 I W N % I S

private String monument;

[a7]

l

! Constructeur par défaut

= public Capitale()

q I

18 F/oce mot cle appelle le constructeur de la classe mere
11 super({); .

12 monument = “aucun™;

13)

_? }

Si vous essayez a nouveau le petit exemple que je vous avais montré un peu plus haut, vous vous
apercevrez que le constructeur par défaut fonctionne toujours... Et pour cause : ici, super() appelle le
constructeur par défaut de I'objet Ville dans le constructeur de Capitale. Nous avons ensuite ajouté un
monument par défaut.

TITRE | Page 3

v

TITRE | Page 4

Cependant, la méthode decrisToi() ne prend pas en compte le nom d'un monument. Eh bien le mot
clé super() fonctionne aussi pour les méthodes de classe, ce qui nous donne une méthode decrisToi() un
peu différente, car nous allons lui ajouter le champ monument pour notre description :

public class Capitale extends VilleHeritage {
private String monument;

f Constructeur par défaut
public Capitale()

1
'/ ce mot clé appelle le constructeur de la classe mére
super();
monument = “aucun”;

b

public String decrisTodl()

1
String str = super.decrisToi() + "\n\t ==:> "+this.meonument+ " en est un monument";
System.out.println{"utilisaticn de super.decrisToi()");
return str}

¥

Si vous relancez les instructions présentes dans le main depuis le début, vous obtiendrez quelque chose
comme sur la figure suivante :

Creation d'une ville !!!

utilisation de super.decrisToi()
Inconnu est une wille de Inconnu, elle comporte @ habitant(s) =*> elle est donc de catB@gorie : ?
==»» aucun en est un monument

J'ai ajouté les instructions System.out.println afin de bien vous montrer comment les choses se passent.

CQM TITRE | Page 4

TITRE | Page 5

A présent ajoutons a notre classe Capitale un constructeur d’initialisation de Capitale, un getters
getMonument() et un setters setMonumenty().

14 ! Constructeuyr d'initialisation de capitale

158 public Capitale(String pMom, int pHabitant, String pPays, String pMonument) {
16 super(pNom, pHabitant, pPays);

17 this.monument = pMonument;

18 }

19

28 !

21 * Description d'une capitale

22 = string retourne la description de 1'objet

23 */

24 public String decrisTei() {

25 String str = super.decrisToi() + "‘n\t ==:> "+this.monument+ " en est un monument”;
26 System.out.println(“utilisaticn de super.decrisTei()");
27 return str}

28 }

29

ElS= f

31 le nom dy monument

32 *f

332 public String getMonument() {

34 return monument;

35 }

36

37 '/ Definit le nom du monument

3B public wvoid setMonument(String pMonument) {

39 this.monument = pMonument;

A }

Les commentaires que vous pouvez voir(en bleu clair) sont ce que I'on appelle des commentaires JavaDoc.
lls permettent de créer une documentation pour votre code. Vous pouvez faire le test avec Eclipse en
allant dans le menu Project/Generate JavaDoc.

Dans le constructeur d'initialisation de notre Capitale, vous remarquez la présence de super(pNom,
pHabitant, pPays);. Cette ligne de code joue le méme role que celui que nous avons précédemment vu
avec le constructeur par défaut. Mais ici, le constructeur auquel super fait référence prend trois
parametres : ainsi, super doit prendre ces parametres. Si vous ne lui mettez aucun

parameétre, super() renverra le constructeur par défaut de la classe Ville.

Testez le code ci-dessous, il aura pour résultat la figure suivante.

L

public class App {

= public static woid main(String[] args) {

=] @ P

Capitale capitale = new Capitale("Paris™, 2145986, "France"”, "La tour Eiffel™);
System.owt.println(capitale.decrisToi());

[X B s
ot

I
]
L

WIlE

[#! Problems @ Javadoc [El Declaration B Console x i %|

<terminated> App (2) [Java Application] C\Program Files\Javayjdk-19\bin\javaw.exe (15 févr. 2023, 11:28:41 - 11:28:44) [pid: 12648]
utilisation de super.decrisToi()
Paris est une ville de France, elle comporte 2145986 habitant(s) => elle est donc de cat3gorie : F
==»> La tour Eiffel en est un monument

CQM_ TITRE | Page 5

TITRE | Page 6

public static void main(5tring[] args) {
WilleHeritage[] tableau = new VilleHeritage[&];

string tab[] = {"Marseille", “Lyen", "Mulhouse™, “Paris", "Washington", "Berlin"};
int tabl[] = {878321,522228,138038,2945086,7085749 37487487 ;

String tab2[] = {"France”, "Etats Unis d'Amerique™, "Allemagne"};

string tab3[] = {"La tour Eiffel™, "Le Lincoln Memorial"”, "le palais du Reichtag"};

for(int i = @; 1 < B; i++)
1
if{i < 3)

VilleHeritage v = new VilleHeritage(tab[i],tabl[i],"France™);
tableau[i] = v;

h

else

1
Capitale ¢ = new Capitale(tab[i],tabl[i],tab2[i-3],tab3[i-3]);
tableau[i] = c;

b

for(villeHeritage V : tableau)
1

b

System.out.println{V.decrisToi{)+"\n");

Marseille est une ville de France, elle comporte 878321 habitant(s) =» elle est donc de catBgorie : E
Lyon est une ville de France, elle comporte 522228 habitant(s) =» elle est donc de cat@gorie @ E
Mulhouse est une wille de France, elle comporte 138838 habitant(s) =»> elle est donc de catBgorie : D

utilisation de super.decrisToi()
Paris est une ville de France, elle comporte 2945986 habitant(s) =» elle est donc de cat3gorie @ F
==>» La tour Eiffel en est un monument

utilisation de super.decrisToi()
Washington est une ville de Etats Unis d'Amerique, elle comporte 785749 habitant(s) =» elle est donc de cat@gorie : E
==»»> Le Lincoln Memorial en est un monument

utilisation de super.decrisToi()
Berlin est une ville de Allemagne, elle comporte 3748748 habitant(s) =» elle est donc de catBgorie : F
==»»> le palais du Reichtag en est un monument

--- FIN DU DOCUMENT ---

TITRE | Page 6

v

