
MEISTERTZHEIM Adeline 15/02/2023

Conception & Développement Informatique

APPRENDRE LES BASES DE L’OBJET

TYPE : APPRENTISSAGE / TRAVAUX PRATIQUES

Partie 2 L’héritage

CONTENU

le principe de l’héritage .. 1

TITRE | Page 1

 TITRE | Page 1

LE PRINCIPE DE L ’HERITAGE

La notion d'héritage est l'un des fondements de la programmation orientée objet.
Imaginons que, dans le programme réalisé dans la partie 1 (la classe VilleHeritage), nous voulions créer un
autre type d'objet : des objets Capitale. Ceux-ci ne seront rien d'autre que des objets VilleHeritage avec un
paramètre en plus… disons un monument. Vous n'allez tout de même pas recoder tout le contenu de la
classe VilleHeritage dans la nouvelle classe ! Déjà, ce serait vraiment contraignant, mais en plus, si vous
aviez à modifier le fonctionnement de la catégorisation de nos objets VilleHeritage, vous auriez aussi à
effectuer la modification dans la nouvelle classe… Ce n'est pas terrible.
Heureusement, l'héritage permet à des objets de fonctionner de la même façon que d'autres.
Grâce à cette notion, nous pourrons créer des classes héritées (aussi appelées classes dérivées) de nos
classes mères (aussi appelées classes de base). Nous pourrons créer autant de classes dérivées, par rapport
à notre classe de base, que nous le souhaitons. De plus, nous pourrons nous servir d'une classe dérivée
comme d'une classe de base pour élaborer encore une autre classe dérivée.
 Nous allons créer une nouvelle classe, nommée Capitale, héritée de VilleHeritage. Vous vous rendrez vite
compte que les objets Capitale auront tous les attributs et toutes les méthodes associées aux
objets VilleHeritage !

C'est le mot clé extends qui informe Java que la classe Capitale est héritée de VilleHeritage. Pour vous le
prouver, essayez ce morceau de code dans votre main :

Vous devriez avoir la figure suivante en guise de rendu :

TITRE | Page 2

 TITRE | Page 2

C'est bien la preuve que notre objet Capitale possède les propriétés de notre objet VilleHeritage. Les objets
hérités peuvent accéder à toutes les méthodes public (ce n'est pas tout à fait vrai… Nous le verrons avec le
mot clé protected) de leur classe mère, dont la méthode decrisToi() dans le cas qui nous occupe.
En fait, lorsque vous déclarez une classe, si vous ne spécifiez pas de constructeur, le compilateur (le
programme qui transforme vos codes sources en byte code) créera, au moment de l'interprétation, le
constructeur par défaut. En revanche, dès que vous avez créé un constructeur, n'importe lequel, la JVM ne
crée plus le constructeur par défaut.
Notre classe Capitale hérite de la classe VilleHeritage, par conséquent, le constructeur de notre objet
appelle, de façon tacite, le constructeur de la classe mère. C'est pour cela que les variables d'instance ont
pu être initialisées ! Cependant, essayez ceci dans votre classe :

Vous allez avoir une belle erreur de compilation ! Dans notre classe Capitale, nous ne pouvons pas utiliser
directement les attributs de la classe VilleHeritage.
Pourquoi cela ? Tout simplement parce les variables de la classe VilleHeritage sont déclarées private. C'est
ici que le nouveau mot clé protected fait son entrée. En fait, seules les méthodes et les variables
déclarées public ou protected peuvent être utilisées dans une classe héritée ; le compilateur rejette votre
demande lorsque vous tentez d'accéder à des ressources privées d'une classe mère !
Remplacer private par protected dans la déclaration de variables ou de méthodes de la
classe VilleHeritage aura pour effet de les protéger des utilisateurs de la classe tout en permettant aux
objets enfants d'y accéder. Donc, une fois les variables et méthodes privées de la classe mère déclarées
en protected, notre objet Capitale aura accès à celles-ci ! Ainsi, voici la déclaration de nos variables dans
notre classe VilleHeritage revue et corrigée :

TITRE | Page 3

 TITRE | Page 3

Notons un point important avant de continuer. Contrairement au C++, Java ne gère pas les héritages
multiples : une classe dérivée (aussi appelée classe fille) ne peut hériter que d'une seule classe mère ! Vous
n'aurez donc jamais ce genre de classe :

La raison est toute simple : si nous admettons que nos
classes AgrafeuseAirComprime et AgrafeuseManuelle ont toutes les deux une méthode agrafer() et que
vous ne redéfinissez pas cette méthode dans l'objet AgrafeuseBionique, la JVM ne saura pas quelle
méthode utiliser et, plutôt que de forcer le programmeur à gérer les cas d'erreur, les concepteurs du
langage ont préféré interdire l'héritage multiple.
À présent, continuons la construction de notre objet hérité : nous allons agrémenter notre classe Capitale.
Comme je vous l'avais dit, ce qui différenciera nos objets Capitale de nos objets Ville sera la présence d'un
nouveau champ : le nom d'un monument. Cela implique que nous devons créer un constructeur par défaut
et un constructeur d'initialisation pour notre objet Capitale.
Avant de foncer tête baissée, il faut que vous sachiez que nous pouvons faire appel aux variables de la
classe mère dans nos constructeurs grâce au mot clé super. Cela aura pour effet de récupérer les éléments
de l'objet de base, et de les envoyer à notre objet hérité. Démonstration :

Si vous essayez à nouveau le petit exemple que je vous avais montré un peu plus haut, vous vous
apercevrez que le constructeur par défaut fonctionne toujours… Et pour cause : ici, super() appelle le
constructeur par défaut de l'objet Ville dans le constructeur de Capitale. Nous avons ensuite ajouté un
monument par défaut.

TITRE | Page 4

 TITRE | Page 4

Cependant, la méthode decrisToi() ne prend pas en compte le nom d'un monument. Eh bien le mot
clé super() fonctionne aussi pour les méthodes de classe, ce qui nous donne une méthode decrisToi() un
peu différente, car nous allons lui ajouter le champ monument pour notre description :

Si vous relancez les instructions présentes dans le main depuis le début, vous obtiendrez quelque chose
comme sur la figure suivante :

J'ai ajouté les instructions System.out.println afin de bien vous montrer comment les choses se passent.

TITRE | Page 5

 TITRE | Page 5

A présent ajoutons à notre classe Capitale un constructeur d’initialisation de Capitale, un getters
getMonument() et un setters setMonument().

Les commentaires que vous pouvez voir(en bleu clair) sont ce que l'on appelle des commentaires JavaDoc.
Ils permettent de créer une documentation pour votre code. Vous pouvez faire le test avec Eclipse en
allant dans le menu Project/Generate JavaDoc.

Dans le constructeur d'initialisation de notre Capitale, vous remarquez la présence de super(pNom,
pHabitant, pPays);. Cette ligne de code joue le même rôle que celui que nous avons précédemment vu
avec le constructeur par défaut. Mais ici, le constructeur auquel super fait référence prend trois
paramètres : ainsi, super doit prendre ces paramètres. Si vous ne lui mettez aucun
paramètre, super() renverra le constructeur par défaut de la classe Ville.
Testez le code ci-dessous, il aura pour résultat la figure suivante.

TITRE | Page 6

 TITRE | Page 6

--- FIN DU DOCUMENT ---

