
Écrit par : Guillaume “JirAWS” JACQUELET
Date de publication : 2024

Version : 1.8.6

YouTube : https://www.youtube.com/c/JirAWS
Site web : https://www.jiraws.com

Mail : contact@jiraws.com

https://www.jiraws.com
https://www.jiraws.com

2

Sommaire 📖
[Summary]

Introduction 4

Note de l’Auteur 5

Mises à Jour 6

Mode d’Emploi 7

Sommaire Alphabétique (Alphabetical Summary) 8

1. Définitions Générales (General Definitions) 8

2. Les Quatre Piliers de la POO (The Four Pillars of OOP) 9

3. Environnement Java (Java Environment) 9

4. Mots-clés Java (Java Keywords) 10

5. Classes et Interfaces Java (Java Classes and Interfaces) 11

6. Méthodes Java (Java Methods) 12

7. Principes de Conception (Design Principles) 13

8. Formats de Fichiers (File Formats) 13

Bases du Langage Java (Java Language Basics) 14

7. Environnement Java (Java Environment) 14

8. Syntaxe de base (Basic Syntax) 15

9. Types Primitifs (Primitive Types) 18

10. Fonctions (Functions) 20

11. Opérateurs (Operators) 23

12. Affirmations (Assertions) 26

13. Structures Conditionnelles (Conditional Structures) 27

14. Boucles et Itérations (Loops and Iterations) 31

15. Imports et Paquets (Imports and Packages) 36

Programmation Orientée Objet (Object Oriented Programming) 37

16. Les Quatre Piliers de la POO (The Four Pillars of OOP) 38

17. Objets (Objects) 40

18. Constructeurs (Constructors) 43

19. Classes (Classes) 46

20. Héritage (Inheritance) 49

21. Interface (Interface) 51

22. Énumérations (Enumerations) 53

23. Modificateurs (Modifiers) 54

24. Immutabilité (Immutability) 59

25. Types Enveloppes (Wrappers) 62

26. Manipulation de Texte (String) 66

27. Manipulation Numérique (Number) 73

28. Dates et Temps (Dates and Times) 78

Guillaume JACQUELET https://www.jiraws.com

https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.w8u06xj4yc6k
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2vaicbtixn46
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.w8u06xj4yc6k
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2vaicbtixn46
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2760jtgifnvg
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.gnmzb6dak8sn
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2760jtgifnvg
https://www.jiraws.com
https://www.jiraws.com

3

Gestion des Données (Data Management) 80

29. Tableaux (Arrays) 80

30. Généricité (Generics) 81

31. Collections (Collections) 82

32. Listes (Lists) 88

33. Ensembles (Sets) 89

34. Dictionnaires (Maps) 91

35. Files d’Attente (Queues) 96

36. Flux (Streams) 97

Gestion des Exceptions (Exception Handling) 104

37. Objets Jetables (Throwables) 104

38. Exceptions (Exceptions) 111

39. Erreurs Système (System Errors) 114

40. Ressources Gérables (Manageable Resources) 115

Entrée / Sortie (Input / Output) 116

41. Scanner (Scanner) 116

42. Fichiers (Files) 117

Avancé (Advanced) 121

43. Programmation Fonctionnelle (Functional Programming) 121

44. Fils d’Exécution (Threads) 122

45. Annotations (Annotations) 126

46. Réflexion (Reflection) 126

47. Sérialisation (Serialization) 127

Concepts et Principes de Développement (Dev. Concepts and Principles) 128

48. Bonnes Pratiques (Good Practices) 128

49. Principes de Conception (Design Principles) 129

Glossaire Général de la Programmation (General Programming Glossary) 131

Formats de Fichiers (File Formats) 135

Historique des Versions (Version History) 136

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

4

Introduction 🌟
[Introduction]

Bienvenue dans le JavaCore Master Guide, le guide complet des
mots-clés, concepts et principes de programmation à connaître pour
devenir développeur Java.

La promesse de ce document est de fournir une définition claire,
rédigée personnellement par l’auteur (JirAWS), pour chacun des
termes jugés incontournables du langage Java.

Le monde de la programmation Java est vaste, et être capable de
donner un sens à chaque terme de ce langage est primordial pour
comprendre son envergure et ainsi mieux structurer ses idées.

L'Univers de l'informatique étant majoritairement anglophone, vous
trouverez dans ce document des traductions anglais <-> français,
permettant de mieux saisir la signification derrière les anglicismes
fréquemment rencontrés sur Internet et dans les documentations
souvent anglophones.

Bien qu'il soit de bonne pratique d’écrire son code (commentaires,
noms de variables, méthodes, classes, etc.) en anglais, ce document
vise à faciliter l'apprentissage de la programmation et s'écarte
donc volontairement de cette pratique pour réduire les obstacles.
Les exemples de code fournis contiennent délibérément du “franglais”
(français/anglais) pour en faciliter la compréhension.

Ce document sert également de support de connaissances tout au long
du programme JavaCore (Essential, Plus+ et Élite), une formation
Java de A à Z disponible sur le site (https://www.jiraws.com).

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com
https://www.jiraws.com

5

Note de l’Auteur ✍️
[Author’s Note]

Nous, développeurs, avons tous des termes, des concepts et des
principes de programmation que nous ne connaissons que vaguement,
sans être capables de les expliquer, ne serait-ce qu’en surface.

C’est en cela que j’ai tenu à ce que ce document soit le plus
complet possible et accessible à tous. Les définitions ont chacune
été rédigées par mes soins, avec mes mots et ma vision pédagogique
des choses pour associer des phrases simples aux différents éléments
de la programmation en Java.

À l’ère de l’IA, écrire un tel document sans assistance serait un
challenge de taille, mais c’est bel et bien la direction qui a été
choisie. Les définitions et les exemples de code ont entièrement été
rédigés manuellement, et l’usage de l’IA (ChatGPT) n’a été employé
que pour assurer la qualité finale du document avec notamment des
vérifications de contenu ou encore des corrections orthographiques.

La programmation est un amalgame de logiques à comprendre et de
connaissances à apprendre, et ce document a pour but de jouer ce
rôle de recueil de connaissances minimales. C’est pourquoi ce
document a été rédigé pour jouer un rôle important dans le programme
JavaCore, ma formation Java de A à Z pour débutants.

Je vous conseille de consommer le contenu de ce guide sans
modération car l’entièreté des termes présents et de leurs
définitions aura une utilité, tôt ou tard, dans votre carrière.

Si vous connaissez l’ensemble des définitions présentes dans ce
guide, vous pouvez alors considérer avoir une très bonne
connaissance théorique du monde de la programmation en Java.

Comme d’habitude, vous avez la parole. Si vous estimez qu’un terme
devrait, selon vous, avoir sa place dans ce document, n’hésitez pas
à m’en faire part (par mail: contact@jiraws.com, ou via Discord).

Bon apprentissage !

Guillaume (JirAWS)

Guillaume JACQUELET https://www.jiraws.com

mailto:contact@jiraws.com
https://discord.gg/HDQG7KfSsn
https://www.jiraws.com
https://www.jiraws.com

6

Mises à Jour 🔄
[Updates]

Ce document sera amené à évoluer dans le temps, avec des ajouts de
nouvelles définitions et d’exemples de code, et si nécessaire, des
corrections voire même des améliorations du contenu déjà présent.

Les différentes mises à jour auront toutes pour objectif de faire en
sorte que ce guide conserve sa promesse initiale : proposer une
explication claire pour chaque mot-clé à connaître dans le monde du
langage Java.

Pour suivre les évolutions, une annexe de l’historique des versions
est disponible en fin de document.

Vous préférez votre lecture sur papier ?
Recevez votre exemplaire broché, en couleur,
avec du papier de haute qualité !

Soutien 💪
[Support]

Pour celles et ceux qui souhaiteraient soutenir le développement de
ce document, ou tout simplement me remercier pour les efforts
fournis, une plateforme de dons est disponible :

https://www.buymeacoffee.com/JirAWS

Note : On reste dans le thème de Java, avec pour symbole le café.

Guillaume JACQUELET https://www.jiraws.com

https://www.buymeacoffee.com/JirAWS
https://www.jiraws.com
https://www.jiraws.com

7

Mode d’Emploi 🔧
[How To]

Voici une brève illustration explicative de la structure du contenu.

Conseil de recherche avec l’outil CTRL+F pour parcourir le document.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

8

Sommaire Alphabétique 🔍
[Alphabetical Summary]

1. Définitions Générales (General Definitions)

Terme Page Terme Page

Algorithme 131 Désérialisation 127

Annotation 126 Design Patterns 128

API 131 Expression Booléenne 24

Argument 21 Fonction 20

Attribut 47 Framework 132

Auto-boxing 63 Generics 81

Auto-unboxing 63 Getter 56

Bibliothèque 131 Hachage 133

Bloc de code 20 IDE 134

Boilerplate 131 Immuable 59

Boucle 30 Implémentation 134

Buffer 132 Inférence 16

Cache 128 Initialisation 16

Casting 64 Instance 40

Chiffrement 133 Instanciation 43

Classe Utilitaire 48 Instruction 134

Compilation 132 Intégration Continue 133

Concaténation 66 Interprétation 132

Condition 27 Itération 30

Constante 15 Lambda Function 121

Constructeur 43 Membre 47

Débogage 133 Metadata 128

Déclaration 16 Méthode 47

Définition 47 Middleware 134

Déploiement 133 Modificateur 54

Dépréciation 133 Objet 40

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

9

Terme Page Terme Page

Opérateur 23 Opérateur Affectation 24

Opérateurs Arithmétiques 23 Référence 16

Opérateurs de Comparaison 25 Reflection 126

Opérateurs Incrémentation 23 Regex 67

Opérateurs Logiques 25 Sérialisation 127

Overflow 134 Setter 57

Overload 48 StackTrace 104

Override 47 Stream 97

Parallélisme 134 Syntaxe 15

Paramètre 21 Tableau 80

Portée de Variable 17 Text Blocks 68

Primitif 18 Type 15

Procédure 22 Variable 15

Programmation Orientée Objet 37 Versioning 128

Récursion 134 Visibilité 54

Refactoring 128 Wrapper 62

2. Les Quatre Piliers de la POO (The Four Pillars of OOP)

Terme Page Terme Page

Abstraction 38 Héritage 39

Encapsulation 38 Polymorphisme 39

3. Environnement Java (Java Environment)

Terme Page Terme Page

JDK 14 JVM 14

JRE 14 GC 14

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

10

4. Mots-clés Java (Java Keywords)

Terme Page Terme Page

abstract 49 native 58

assert 26 new 43

boolean 19 non-sealed 50

break 34 null 16

byte 18 package 36

case 29 permits 50

catch 106 private 55

char 19 protected 55

class 46 public 54

continue 35 record 61

default 29 return 22

do 32 sealed 50

double 19 short 18

else 27 static 58

else if 28 super 41

enum 53 switch 29

extends 49 synchronized 125

false 19 this 40

final 60 throw 110

finally 107 throws 110

float 19 transient 127

for 33 true 19

for-each 33 try 105

if 27 try-with-resources 108

implements 52 var 16

import 36 void 22

instanceof 42 volatile 124

int 18 while 31

interface 51 yield 30

long 18

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

11

5. Classes et Interfaces Java (Java Classes and Interfaces)

ArithmeticException 111 IndexOutOfBoundsException 112

ArrayIndexOutOfBoundsException 112 Integer 62

ArrayList<E> 88 IOException 113

AssertionError 26 Iterator 86

AutoCloseable 115 LinkedList<E> 88

BigDecimal 74 List<E> 88

BigInteger 73 ListIterator 86

Boolean 63 LocalDate 78

BufferedReader 119 LocalDateTime 79

BufferedWriter 120 LocalTime 78

Byte 62 Long 62

Character 62 Map<K, V> 91

ClassCastException 112 Math 75

ClassNotFoundException 113 NullPointerException 111

Closeable 115 Object 44

Collection<E> 82 OutOfMemoryError 114

Collections 82 Queue<E> 96

Comparable<T> 87 Runnable 122

ConcurrentModificationException 112 RuntimeException 111

Date 78 Scanner 116

Double 62 Serializable 127

Duration 79 Set<E> 89

Error 114 Short 62

Exception 111 SQLException 113

File 117 StackOverflowError 114

FileNotFoundException 113 Stream<E> 97

FileReader 118 String 66

FileWriter 120 Thread 123

Float 62 Throwable 104

HashMap<K, V> 91 TreeMap<K, V> 92

HashSet<E> 89 TreeSet<E> 90

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

12

6. Méthodes Java (Java Methods)

Terme Page Terme Page

Collection.add(E element) 83 Math.sqrt(double a) 77

Collection.clear() 85 Object.equals(Object obj) 44

Collection.contains(E element) 84 Object.getClass() 45

Collection.get(int index) 84 Object.hashCode() 44

Collection.isEmpty() 86 Object.toString() 45

Collection.iterator() 87 Stream.distinct() 103

Collection.remove(E element) 83 Stream.filter(Predicate<T> pred) 98

Collection.size() 85 Stream.forEach(Function map) 100

Collection.stream() 97 Stream.map(Function<T,R> map) 99

Collections.sort(List<T> list) 82 Stream.sorted() 101

Integer.parseInt(String str) 74 Stream.toList() 102

Integer.valueOf(String str) 75 String.charAt(int index) 69

Map.entrySet() 95 String.endsWith(String suffix) 71

Map.get(K key) 93 String.equals(String str) 73

Map.keySet() 94 String.indexOf(String target) 72

Map.put(K key, V value) 92 String.lastIndexOf(String target) 72

Map.remove(K key) 93 String.length() 68

Map.values() 94 String.split(String regex) 70

Math.abs(int a) 77 String.startsWith(String pref) 71

Math.min(int a, int b) 75 String.substring(int b, int e) 69

Math.max(int a, int b) 75 String.toLowerCase() 71

Math.random() 76 String.toUpperCase() 72

Math.round(double a) 76 String.trim() 70

String.replaceAll(String t, String r) 70

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

13

7. Principes de Conception (Design Principles)

Terme Page Terme Page

DRY 129 WORE 14

KISS 129 YAGNI 129

SOLID 130

8. Formats de Fichiers (File Formats)

Terme Page Terme Page

.class 135 .json 135

.jar 135 .properties 135

.java 135 .xml 135

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

14

Bases du Langage Java ☕
[Java Language Basics]

1. Environnement Java (Java Environment)

JVM (Java Virtual Machine) : Moteur d'exécution qui permet de faire
fonctionner des applications Java. C’est grâce à elle que l’on peut
exécuter des programmes écrits en langage Java.

JRE (Java Runtime Environment) : Environnement d'exécution Java qui
comprend la JVM et les bibliothèques (bibliothèque) nécessaires pour
exécuter des applications Java. Il contient tous les éléments
nécessaires pour faire fonctionner des applications Java, mais il ne
contient pas les outils de développement du JDK.

JDK (Java Development Kit) : Kit de développement pour Java. Il
inclut tout le nécessaire pour développer des applications Java, y
compris un compilateur (compilation), des outils de débogage, ainsi
que la JVM pour tester les applications développées. C’est l’élément
que vous devez installer sur votre ordinateur pour pouvoir écrire des
programmes en Java sur votre IDE (Eclipse, IntelliJ, etc.).

Garbage Collection (Collecte des Ordures) : Processus interne du
langage Java qui vient débarrasser la mémoire vive des éléments qui
ne sont plus utilisés. Une variable déclarée dans un bloc de code
sera, après exécution, détectée comme inutilisée par le Garbage
Collector et supprimée de la mémoire pour libérer la place.

WORE (Write Once, Run Everywhere) : Promesse centrale du langage
Java visant à rendre un programme compatible multi-plateforme, c’est
à dire exécutable sur “tous” les systèmes disposant d’une JVM, sans
devoir adapter le code à chaque fois. En pratique, l'idéal du "Write
Once, Run Everywhere" est complexe à réaliser, car de nombreux
facteurs tels que les différences d'environnements d'exécution et les
spécificités des plateformes entrent en jeu. Une maîtrise approfondie
de Java et de son écosystème est nécessaire pour naviguer ces défis et
atteindre une véritable portabilité du code.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

15

2. Syntaxe de base (Basic Syntax)

Syntaxe : Ensemble de règles qui définissent les combinaisons
valides de symboles pour écrire un programme.

Par exemple, la valeur d’une chaîne de caractères (String) en Java est
écrite entre des “ “ (guillemets). L’utilisation des ‘ ‘ (apostrophes)
entraîne une erreur de compilation car ces derniers sont réservés pour
les caractères (char / Character).

String texte = "Un texte";

char caractere = 'c';

Variable : Espace mémoire accessible par un nom, permettant de
stocker une valeur de type primitif ou référence. Le terme “variable”
vient directement du fait que sa valeur puisse varier dans le temps.

int age = 25;

age = 26; // On peut changer la valeur affectée à la variable

Constante : Une variable dont la valeur ne peut pas être changée
après son initialisation. Comme une variable, une constante possède
un nom et un type. En Java, il faut ajouter le modificateur final à
une variable pour qu’elle soit considérée comme une constante.

final int age = 25;

age = 26; // Erreur, une constante ne peut pas changer de valeur

Type : “Étiquette” indiquant la nature de la donnée que contiendra
une variable, le retour d’une méthode ou même un élément générique
(dans le cas de la généricité). C’est une information qui est
notamment considérée par un IDE, permettant ainsi aux développeurs
d’écrire du code plus sûr et d' éviter les erreurs.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

16

Déclaration : Étape de création d’une variable, nécessitant la
combinaison d’un type et d’un nom. C’est une étape nécessaire pour
réserver un espace mémoire dédié à la valeur qui sera affectée durant
son initialisation.

// Déclaration d'une variable nommée "age" de type "int" (entier)

int age;

Initialisation : Première affectation de valeur à une variable.

// Déclaration, puis initialisation, d'une variable nommée "age"

int age;

age = 25;

// Déclaration et initialisation d’une variable nommée "annee"

int annee = 1995;

Référence : Type de données composite qui pointe vers un objet dans
la mémoire. En lien direct avec la notion d’objet en Java, des
structures regroupant les données et améliorant leur manipulation.

null : Valeur spéciale d’une variable référence indiquant que cette
dernière est “vide”, ou plutôt, qu’elle n’est affectée à aucune
référence mémoire (et donc, aucun objet).

// Une variable référence est créée, mais ne pointe vers aucun objet

Object object = null;

var : Type spécial d’une variable à utiliser dans sa déclaration
pour invoquer l'inférence de type.

var age = 25;

Inférence : Processus par lequel la compilation détermine
automatiquement le type d'une variable à partir de sa valeur.

/**

* le langage Java déduira automatiquement que la variable "age"

* est affectée à une valeur numérique entière (int)

*/

var age = 25;

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

17

Portée de Variable : Rayon d’action d’une variable déterminant dans
quelle(s) partie(s) du code cette dernière peut être accédée et
manipulée. Directement lié à la notion de bloc de code.

Une variable déclarée dans le bloc de code d’une condition if ne sera
accessible que dans ce dernier, ou dans ceux se trouvant à l’intérieur
(dans une autre condition imbriquée par exemple).

int age = 25;

if (age >= 18) {

System.out.println("Vous êtes majeur en France.");

// La variable age est également accessible dans ce bloc de code

if (age >= 65) {

System.out.println("Vous êtes également senior en France");

}

// Variable déclarée dans le bloc de code du if

int uneVariableDansLeBlocIf = 1337;

}

/**

* Erreur: La variable a été déclarée dans un sous-bloc de code.

* Le mécanisme de la Portée de Variable empêche donc son utilisation.

*/

uneVariableDansLeBlocIf = 2000;

// Résultat (affichage) dans la console

Vous êtes majeur en France.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

18

3. Types Primitifs (Primitive Types)

Primitif : Type de donnée le plus basique en programmation,
permettant de représenter des informations primaires.

En Java, on retrouve 8 types primitifs couvrant l’ensemble des besoins
de représentation des données:

● Valeurs Numériques Entières : byte, short, int et long.

● Valeurs Flottantes (à virgule) : float et double.

● Valeurs Caractères : char.

● Valeurs Booléennes : boolean.

byte : Type de données signé sur 8 bits pour les toutes petites
valeurs numériques entières. Intervalle de valeurs : -128 à +127

byte distanceSalleDeSport = 2;

short : Type de données signé sur 16 bits pour les petites valeurs
numériques entières. Intervalle de valeurs : -32.768 à +32.767

short rayonPlaneteTerre = 6371;

int : Type de données signé sur 32 bits pour les valeurs numériques
entières. Intervalle de valeurs : -2.147.483.648 à +2.147.483.647

int distanceTerreLune = 384400;

long : Type de données signé sur 64 bits pour les grandes valeurs
numériques entières. Intervalle de valeurs : -2^63 à +2^63-1

// On utilise 'L' ou 'l' à la fin de la valeur pour indiquer "long"

long distanceSoleilNeptune = 4500000000L;

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

19

char : Type de données non-signé sur 16 bits pour les caractères.

Intervalle de valeurs : 0 à 65.535. Les 65536 premiers caractères
Unicode (de U+0000 à U+FFFF) font partie de la Plage du Plan
Multilingue de Base (BMP pour Basic Multilingual Plane).

char aMajuscule = 'A'; // Valeur entière Unicode associée : 65

char bMajuscule = 'B'; // Valeur entière Unicode associée : 66

char aMinuscule = 'a'; // Valeur entière Unicode associée : 97

float : Type de données sur 32 bits pour les nombres à virgule
flottante simple précision. Intervalle de valeurs : 1.4E-45 à
3.4028234E38

// On utilise 'F' ou 'f' à la fin de la valeur pour indiquer "float"

float tailleMoyenneHumain = 1.75F;

double : Type de données sur 64 bits pour les nombres à virgule
flottante double précision. Intervalle de valeurs : 4.9E-324 à
1.79769313486231157E308

double approximationPi = 3.141592653589793;

boolean : Type de données sur 1 bit pour les valeurs true (vrai) ou
false (faux). Basé sur les transistors des processeurs de nos
machines, de petits “interrupteurs” laissant, ou non, circuler
l’électricité : ouvert (vrai / true / 1), ou fermé (faux / false / 0).

true : Valeur booléenne vraie. Équivalent de 1 en binaire.

boolean like = true;

false : Valeur booléenne fausse. Équivalent de 0 en binaire.

boolean dislike = false;

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

20

4. Fonctions (Functions)

Fonction : Sous-programme composé d’un nom et d’un bloc de code
pouvant avoir des paramètres (paramètre) et retourner (renvoyer) un
résultat suite à son exécution.

Lorsque l’on demande à son (gentil) collègue de nous ramener un café,
on fait appel à sa fonction “faireUnCafe()” contenant les actions
(instruction) à réaliser, étape par étape, pour faire un café et par
la suite nous le donner (renvoyer).

TypeDeRetour nomDuProgramme(TypeDuParamètre nomDuParamètre) {

instruction1;

instruction2;

instruction3;

return valeurRetournée;

}

Bloc de code : Ensemble d’instructions (instruction) délimitées par
des accolades { } en Java.

Des éléments comme une méthode, une condition et une boucle possèdent
tous un bloc de code associé et ne sont en fait que des manières
différentes de démarrer leur exécution.

La notion de bloc de code est liée à celle de la portée de variable.

// Un bloc de code ne contenant qu’une seule instruction

{

System.out.println("Bloc de code affichant ce texte");

}

// Un bloc de code peut en contenir d’autres

{

{

System.out.println("Bloc de code affichant ce texte");

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

21

Paramètre : Variable spécifiée dans la déclaration d'une fonction
agissant comme un "espace réservé" pour une valeur (argument) qui
sera transmise au moment de l’appel de cette dernière.

C’est ce qui permet de fournir des informations (valeurs) à une
fonction exécutée, malgré les contraintes de la portée de variable.

// Une fonction sans paramètre ()

void afficherNomFormation() {

System.out.println("JavaCore");

}

// Une fonction avec un seul paramètre (int a)

int multiplierParDeux(int a) {

return a * 2;

}

// Une fonction avec deux paramètres (int a, int b)

int addition(int a, int b) {

return a + b;

}

Argument : Valeur passée dans le paramètre d’une fonction au moment
de son appel (exécution). On peut voir un paramètre comme l’étape de
déclaration d’une variable, et un argument comme une valeur
d’initialisation affectée lors de l’appel de la fonction.

void fonction1(int a, int b) {

/**

* a et b sont ici des paramètres de la fonction1

* soit des variables en attente d’initialisation

*/

}

void programme() {

/**

* 2 et 4 sont des valeurs (arguments) passées dans les paramètres

* a et b de la fonction1 lors de son appel

*/

fonction1(2, 4); // Instruction qui appelle (exécute) la fonction1

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

22

return : Instruction qui termine l'exécution d'une fonction et
permettant de retourner une valeur si nécessaire.

Une fonction sans cette instruction s’arrêtera d’elle-même quand elle
aura terminé d’exécuter ses instructions.

// Une fonction qui renvoie le résultat de l’addition de deux paramètres

int addition(int a, int b) {

return a + b;

}

// Une fonction "appelle" la fonction "addition" et récupère le résultat

void programme() {

int resultat = addition(2, 4);

System.out.println("Résultat : " + resultat);

}

// Résultat (affichage) dans la console

Résultat : 6

void (vide) : Type de retour spécial indiquant qu’une fonction ne
renvoie rien (aucun résultat). On peut alors dire que cette fonction
est une procédure.

// Une fonction qui ne fait qu’afficher le texte passé en argument

void affichageDeTexte(String texte) {

System.out.println(texte);

}

Procédure : Une fonction qui ne retourne pas de résultat, et qui
utilise donc le type de retour void. C’est un terme très peu utilisé
en Java, bien qu’une fonction ne retournant aucun résultat puisse
quand même être considérée comme une procédure.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

23

5. Opérateurs (Operators)

Opérateur : Symbole spécial utilisé pour effectuer des opérations
spécifiques sur une ou plusieurs opérandes. Il existe différents
opérateurs, répondant chacun à des besoins spécifiques.

Opérateurs Arithmétiques : Ensemble d’opérateurs (opérateur)
permettant de réaliser les opérations mathématiques de base.

● + (Addition): Additionne deux valeurs.
● - (Soustraction): Soustrait une valeur d'une autre.
● * (Multiplication): Multiplie deux valeurs.
● / (Division): Divise une valeur par une autre.
● % (Modulo): Renvoie le reste de la division.

int a = 2 + 3; // 5

int b = 9 - 5; // 4

int c = a * b; // 20 car 5 x 4

int d = c / 2; // 10 car 20 / 2

int e = d % 2; // 0 car 10 = 2 x 5 et il reste 0.

Opérateurs Incrémentation / Décrémentation : Paire d'opérateurs
(opérateur) permettant l’addition et la soustraction de 1.

● ++ (Incrémentation): Augmente la valeur de 1.
● -- (Décrémentation): Diminue la valeur de 1.

int a = 5;

System.out.println("Valeur initiale de 'a' : " + a);

a++; // a = a + 1;

System.out.println("Valeur de 'a' après incrémentation (++) : " + a);

a--; // a = a - 1;

System.out.println("Valeur de 'a' après décrémentation (--) : " + a);

// Résultat (affichage) dans la console

Valeur initiale de 'a' : 5

Valeur de 'a' après incrémentation (++) : 6

Valeur de 'a' après décrémentation (--) : 5

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

24

Opérateur Affectation / Assignation : Ensemble d’opérateurs
(opérateur) ayant pour rôle d’attribuer une valeur à une variable.

Pour simplifier l’écriture de code, des opérateurs d’affectation
(assignation) combinés ont été ajoutés au langage Java.

● = (Affectation): Affecte une valeur à une variable.
● += (Addition puis affectation): Additionne puis affecte.
● -= (Soustraction puis affectation): Soustrait puis affecte.
● *= (Multiplication puis affectation): Multiplie puis affecte.
● /= (Division puis affectation): Divise puis affecte.
● %= (Modulo puis affectation): Applique le modulo puis affecte.

int a = 5;

System.out.println("Valeur initiale de 'a' : " + a);

a += 6; // a = a + 6;

System.out.println("Valeur de 'a' après addition (+) : " + a);

a -= 5; // a = a - 5;

System.out.println("Valeur de 'a' après soustraction (-) : " + a);

a *= 4; // a = a * 4;

System.out.println("Valeur de 'a' après multiplication (*): " + a);

a /= 3; // a = a / 3;

System.out.println("Valeur de 'a' après division (/) : " + a);

a %= 2; // a = a % 2;

System.out.println("Valeur de 'a' après modulo (%) : " + a);

// Résultat (affichage) dans la console

Valeur initiale de 'a' : 5

Valeur de 'a' après addition (+) : 11

Valeur de 'a' après soustraction (-) : 6

Valeur de 'a' après multiplication (*): 24

Valeur de 'a' après division (/) : 8

Valeur de 'a' après modulo (%) : 0

Expression Booléenne : Combinaison d’opérandes dont le résultat est
une valeur de type boolean. C’est ce qu’un développeur utilise
quotidiennement en programmation, car la logique informatique
contemporaine est basée sur ces dernières.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

25

Opérateurs de Comparaison : Ensemble d’opérateurs (opérateur)
comparant deux valeurs et renvoyant un résultat de type boolean.

● == (Égal à): Vérifie si deux valeurs sont égales.
● != (Différent de): Vérifie si deux valeurs sont différentes.
● > (Plus grand que): Vérifie si une valeur est plus grande.
● < (Plus petit que): Vérifie si une valeur est plus petite.
● >= (Plus grand ou égal à): Vérifie si une valeur est plus grande

ou égale à une autre.
● <= (Plus petit ou égal à): Vérifie si une valeur est plus petite

ou égale à une autre.

boolean isEqual = 5 == 5; // true

boolean isDifferent = 5 != 10; // true

boolean isGreater = 10 > 5; // true

boolean isLower = 5 < 10; // true

boolean isGreaterOrEqual = 10 >= 10; // true

boolean isLowerOrEqual = 20 <= 19; // false

Opérateurs Logiques : Triplet d’opérateurs (opérateur) permettant de
construire des expressions logiques, basées sur les tables de
vérités AND (ET), OR (OU) et NOT (NON).

● && (ET): Renvoie true si les deux opérandes sont vraies.
● || (OU): Renvoie true si au moins une des opérandes est vraie.
● ! (NON): Inverse la valeur booléenne.

int a = 5;

int b = 10;

boolean conditionAnd1 = (a > 5) && (b == 10); // false

boolean conditionAnd2 = (a > 1) && (b == 10); // true

boolean conditionOr1 = (a > 5) || (b == 10); // true

boolean conditionOr2 = (a > 1) || (b == 10); // true

boolean conditionNot1 = !(a == 5); // false

boolean conditionNot2 = !(b > 20); // true

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

26

6. Affirmations (Assertions)

assert : Instruction vérifiant qu’une expression booléenne soit
vraie (true) et lance une AssertionError si ce n’est pas le cas.

Particulièrement utile pour les tests unitaires. Requiert l’activation
des assertions lors du démarrage du programme pour que l’instruction
assert soit bien considérée et puisse renvoyer une erreur.

int result = 2 + 3;

// Assert (affirme) que le résultat attendu de 2 + 3 est 5

assert result == 5 : "Doit être égal à 5";

System.out.println("Le test a réussi.");

// Résultat (affichage) dans la console

Le test a réussi.

AssertionError : Erreur qui se produit lorsque le résultat d’une
“vérification d'affirmation” (assert) est faux (false).

Une assertion est une affirmation que le développeur suppose être
vraie lors de l'exécution d’un code. Une assertion échoue lorsqu’une
condition supposée vraie se révèle fausse dans le programme, lançant
alors une AssertionError signalant au développeur le comportement
anormal rencontré.

int result = 10 + 10;

// Assert (affirme) que le résultat attendu de 10 + 10 est 5

assert result == 5 : "Doit être égal à 5";

System.out.println("Le test a réussi.");

// Résultat (affichage) dans la console

Exception in thread "main" java.lang.AssertionError: Doit être égal à 5

at TestAssertion.main(TestAssertion.java:6)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

27

7. Structures Conditionnelles (Conditional Structures)

Condition : Bloc de code exécuté si, et seulement si, l’expression
booléenne évaluée renvoie vrai (true). Plus globalement, une
condition est une vérification qui renvoie un résultat binaire,
c’est-à-dire soit vrai (true), soit faux (false).

if : Mot-clé utilisé pour déclarer une condition et dont le résultat
déterminera l’exécution de son bloc de code associé.

Requiert une valeur de type boolean qui peut provenir d’une variable,
d’une expression booléenne ou d’un retour de méthode.

int age = 25;

if (age >= 18) {

System.out.println("Vous êtes majeur en France.");

}

// Résultat (affichage) dans la console

Vous êtes majeur en France.

else : Mot-clé optionnel qui suit le bloc de code d’un if ou d’un
else if et qui est exécuté si la ou les condition(s) précédente(s)
sont fausses (false). Peut se lire « sinon » et sert de comportement
par défaut lorsque les conditions précédentes n’ont pas été remplies :

● Si (if) le restaurant est ouvert, on y va ce soir.
● Sinon (else), on se fait à manger.

int age = 15;

if (age >= 18) {

System.out.println("Vous êtes majeur en France.");

}

else {

System.out.println("Vous êtes mineur en France.");

}

// Résultat (affichage) dans la console

Vous êtes mineur en France.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

28

else if : Mot-clé optionnel qui permet d’écrire une condition
alternative à un if et suivant le bloc de code de ce dernier.

● Si (if) le restaurant est ouvert, on y va ce soir.
● Sinon si (else if) ils peuvent livrer, on commande.
● Sinon (else), on se fait à manger.

int age = 17;

if (age >= 18) {

System.out.println("Vous êtes majeur en France.");

}

else if (age == 17) {

System.out.println("Vous êtes presque majeur en France.");

}

else {

System.out.println("Vous êtes mineur en France.");

}

// Résultat (affichage) dans la console

Vous êtes presque majeur en France.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

29

switch : Condition multiple sur une valeur, à la syntaxe (écriture)
différente mais conservant la logique d’une condition standard (if).

Équivalent à un if, else if, …, else if, else mais en plus optimisé.

case : Définit le code à exécuter si la valeur évaluée dans un
switch correspond (est égale). Équivalent au else if d’une condition.

default : Définit le code à exécuter si aucun case ne correspond à
la valeur évaluée dans un switch. Équivalent au else d’une condition.

char note = 'A';

switch (note) {

case 'A':

System.out.println("Excellent !");

break;

case 'B':

System.out.println("Bien !");

break;

case 'C':

System.out.println("Correct.");

break;

case 'D':

System.out.println("Passable.");

break;

case 'E':

System.out.println("Mauvais.");

break;

default:

System.out.println("Note non reconnue.");

}

// Résultat (affichage) dans la console

Excellent !

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

30

yield : Instruction permettant de retourner une valeur depuis une
expression switch. Équivalent du return pour une méthode, permettant
ainsi de récupérer un résultat dans une variable.

char direction = 'N';

String cardinalPoint = switch (direction) {

case 'N':

yield "Nord";

case 'S':

yield "Sud";

case 'E':

yield "Est";

case 'O':

yield "Ouest";

default:

yield "Direction inconnue";

};

System.out.println("La direction est : " + cardinalPoint);

// Résultat (affichage) dans la console

La direction est : Nord

8. Boucles et Itérations (Loops and Iterations)

Boucle : Bloc de code exécuté autant de fois (itération) que
l’expression booléenne évaluée sera vraie (true).

Mécanisme de programmation qui permet une forme de “raisonnement”
(entre gros guillemets) de nos machines grâce à des vérifications en
continu offrant la possibilité de réagir à des changements de données.

Itération : Résultat de l’action d’itérer, à savoir le fait de
répéter un comportement ou une logique.

Une boucle itère tant que sa condition ne renvoie pas faux (false),
autrement dit, elle répète l’exécution de son bloc de code tant que la
condition renvoie vrai (true).

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

31

while : Boucle pouvant être lue “tant que” et qui continue de
s’exécuter aussi longtemps que sa condition renverra vrai (true).

C’est une forme de boucle très utile lorsque l’évolution de la
condition possède une part d’inconnu. Il faudra alors que son bloc de
code, ou autre code extérieur à cette dernière, modifie les facteurs
de sa condition pour qu’elle renvoie faux (false), tôt ou tard.

int age = 10;

// Tant que la valeur de age est strictement inférieure à 18

while (age < 18) {

System.out.println("Vous n'êtes pas encore majeur (" + age + ")");

/**

* Incrémentation de age à chaque exécution du bloc de code

* permettant ainsi d’atteindre petit à petit la valeur 18.

*/

age++;

}

System.out.println("Vous êtes finalement majeur ! (" + age + ")");

// Résultat (affichage) dans la console

Vous n'êtes pas encore majeur (10)

Vous n'êtes pas encore majeur (11)

Vous n'êtes pas encore majeur (12)

Vous n'êtes pas encore majeur (13)

Vous n'êtes pas encore majeur (14)

Vous n'êtes pas encore majeur (15)

Vous n'êtes pas encore majeur (16)

Vous n'êtes pas encore majeur (17)

Vous êtes finalement majeur ! (18)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

32

do : Extension d’une boucle while permettant d’exécuter une fois le
bloc de code associé à cette dernière avant de commencer son travail
d’itération en considérant sa condition.

Particulièrement utile lorsqu’on est certain d’effectuer une action au
moins une fois, et potentiellement plusieurs fois selon la condition
de la boucle.

Exemple : Demander l’âge d’un utilisateur (do), et tant que (while) la
valeur n’est pas conforme (entre 0 et 130 ans par exemple), la boucle
redemandera à l’utilisateur d’entrer une valeur jusqu’à ce qu’elle
soit valide (et donc que la condition renvoie faux (false)).

Scanner scanner = new Scanner(System.in);

int age;

do {

System.out.print("Entrez votre age (0 - 130 ans) : ");

// Cette instruction attend que l’utilisateur écrive dans la console

/**

* 1ère exécution (do) : on suppose que l’utilisateur entre 200

* 2ème exécution (while) : on suppose que l’utilisateur entre 25

*/

age = scanner.nextInt();

if (age < 0 || age > 130) {

System.out.print("Age invalide : " + age + " ans.");

}

} while (age < 0 || age > 130);

System.out.println("Age valide : " + age + " ans.");

// Résultat (affichage) dans la console

Entrez votre age (0 - 130 ans) : 200

Age invalide : 200 ans.

Entrez votre age (0 - 130 ans) : 25

Age valide : 25 ans.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

33

for : Boucle pouvant être lue “pour chaque”, avec une valeur de
départ (initialisation), une condition d’arrêt et une opération de
post-exécution permettant d’atteindre la condition d’arrêt.

C’est la forme de boucle la plus utilisée, offrant un contrôle précis
sur le déroulement des itérations (itération), du début à la fin.

// Pour chaque valeur de i jusqu'à ce que i soit supérieur à 10.

for (int i = 1; i <= 10; i++) {

System.out.println(i);

}

// Résultat (affichage) dans la console

1

2

3

4

5

6

7

8

9

10

for-each : Boucle permettant d’itérer (parcourir) les éléments d’une
liste (tableau ou collection) un par un.

Elle utilise le même mot-clé que la boucle for.

Elle simplifie l’itération sur une suite d’éléments, en évitant
d’avoir à gérer les index manuellement comme avec une boucle for.

// Déclaration et instanciation d’une liste ["Java", "C", "Python"]

List<String> nameList = List.of("Java", "C", "Python");

for (String name : nameList) {

System.out.println(name);

}

// Résultat (affichage) dans la console

"Java"

"C"

"Python"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

34

break : Instruction permettant d’interrompre volontairement
l’exécution d’une boucle ou d’un switch.

Les itérations qui auraient dû être exécutées sont alors annulées.

Très utile lorsqu’on a trouvé le résultat recherché et que poursuivre
l’exécution de la boucle est alors devenu inutile.

// Boucle qui recherche le premier nombre divisible par 5

for (int i = 1; i <= 10; i++) {

if (i % 5 == 0) {

System.out.println("Premier nombre divisible par 5 : " + i);

System.out.println("Interruption de la boucle avec break");

break; // Sort de la boucle (annule les prochaines itérations)

}

else {

System.out.println("Non divisible par 5 : " + i);

}

}

System.out.println("Message qui s’affiche après la boucle");

// Résultat (affichage) dans la console

Non divisible par 5 : 1

Non divisible par 5 : 2

Non divisible par 5 : 3

Non divisible par 5 : 4

Premier nombre divisible par 5 : 5

Interruption de la boucle avec break

Message qui s’affiche après la boucle

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

35

continue : Instruction permettant de sauter (ignorer) l’exécution du
bloc de code d’une boucle pour passer à l'itération suivante.

Très utile lorsqu’on veut ignorer un ou plusieurs cas spécifiques.

// Boucle affichant des nombres excepté ceux qui sont divisibles par 5

for (int i = 1; i <= 10; i++) {

if (i % 5 == 0) {

System.out.println("Ignoré car divisible par 5 : " + i);

continue; // Saute à la prochaine itération de la boucle

}

System.out.println(i);

}

// Résultat (affichage) dans la console

1

2

3

4

Ignoré car divisible par 5 : 5

6

7

8

9

Ignoré car divisible par 5 : 10

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

36

9. Imports et Paquets (Imports and Packages)

import : Permet d’intégrer le code d’un autre fichier du projet pour
pouvoir l’utiliser. C’est une sorte de “copier-coller” du contenu du
ou des fichiers cibles, ne tenant que sur une seule ligne.

Pour utiliser les éléments fournis par le JDK, il faut importer leurs
fichiers sources avant de pouvoir utiliser leurs fonctionnalités.

Pour utiliser l’interface List<E> ou Stream<E>, vous devez importer au
préalable leur code source grâce à import.

import java.util.List;

import java.util.stream.Stream;

package : Peut être vu comme un “dossier” en langage Java, contenant
les différents fichiers Java (classe, interface, enum, etc.) d’une
partie d’un projet. Un projet contient plusieurs packages, qui
doivent former une arborescence logique et pertinente.

Un package nommé “voiture” ne devrait contenir que le code en lien
direct avec la notion de voiture relative au projet.

Le mot-clé package et sa valeur (nom du package) sont positionnés à la
première ligne d’un fichier Java pour indiquer son appartenance.

package com.jiraws.supercarproject.voiture;

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

37

Programmation Orientée Objet - POO 📦
[Object Oriented Programming - OOP]

La Programmation Orientée Objet (POO) est un paradigme de
programmation dans lequel on va chercher à créer et à manipuler des
“objets” pour les faire interagir entre eux. Ce paradigme vise à
structurer le code de manière à faciliter le développement, la
maintenance et la réutilisation des logiciels.

Le langage Java est principalement connu pour son appartenance à la
famille des langages orientés objet, alors que ce n’est pourtant pas
le seul paradigme sur lequel repose ce dernier. En effet, Java
intègre également des aspects de la Programmation Impérative, qui
inclut les fondamentaux communs à de nombreux langages, tels que les
notions de variable, fonction, condition et boucle.

La notion d’objet n’est en fait qu’une approche structurante de la
Programmation Impérative. Elle repose sur les mêmes principes
fondamentaux, mais tend à les “positionner différemment” dans un
programme afin d'en améliorer la qualité et la gestion.

La Programmation Orientée Objet permet donc de modéliser des
concepts du monde réel sous la forme d’objets programmatiques,
rendant le code plus intuitif et aligné sur la façon dont les
humains (et donc, les développeurs) perçoivent le monde.

C’est le paradigme de programmation qui, depuis plus de 10 ans, est le
plus prédominant dans le domaine du développement informatique.

On le retrouve dans les langages les plus populaires, dont Java, mais
également C++, Python, JavaScript, PHP, C# ou encore Kotlin.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

38

10. Les Quatre Piliers de la POO (The Four Pillars of OOP)

La Programmation Orientée Objet (POO) repose sur quatre grands
principes: Encapsulation, Abstraction, Héritage et Polymorphisme.
Ils nécessitent une certaine maîtrise de la programmation pour être
compris et appliqués dans les règles de l’art.

Vous trouverez ci-dessous une définition succincte pour chacun d’entre
eux, que votre expérience viendra consolider avec le temps.

Encapsulation : Mécanisme de limitation d’accès (en lecture et en
écriture) aux membres (membre) d’une classe en utilisant la
visibilité des éléments pour éviter les erreurs de manipulation.

Ce concept est essentiel à la POO, car il contribue à la sécurité, à
la modularité et à la maintenabilité du code. Dans des cas
d’utilisation plus poussés de l’Encapsulation, cette dernière peut
également être un moyen d’abstraction, en cachant certains détails et
en exposant seulement ce qui est nécessaire.

En pratique, bien que le principe d’Encapsulation soit relativement
simple à mettre en place, il reste souvent incompris par les
débutants. Il fait partie, avec le Polymorphisme, des principes de la
POO les plus compliqués à concevoir pour les développeurs.

Note : Pas d'inquiétude à avoir si ce principe vous pose problème. Il
est primordial pour respecter les fondamentaux de la POO, mais n’aura
que peu d’impact sur votre apprentissage général de la programmation.

Abstraction : Conception visant à repousser l’implémentation des
détails dans les classes (classe) qui seront réellement utilisées.

Dans une hiérarchie de classes, souvent représentée sous forme de
pyramide, on essaiera toujours de faire en sorte que les niveaux
supérieurs n’aient pour rôle que de “structurer” en utilisant des
éléments abstraits (abstract) tels que les classes abstraites ou les
interfaces. Les niveaux inférieurs, eux, devront implémenter le code
(les détails) de cette structure qui sera véritablement utilisé dans
un programme (on parle alors de classe “concrète”).

Un bon exemple est la classe reine Object : son influence est
omniprésente en Java car toutes les classes héritent d’une manière ou
d’une autre de cette dernière, mais son utilisation directe est rare.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

39

Héritage : Capacité d'un élément (classe ou interface) à transmettre
ses membres (membre) à d’autres éléments, permettant ainsi la
réutilisation et l'extension du code.

Si on souhaite représenter des voitures et des motos dans notre
programme, il y a fort à parier que leurs classes auront des points
communs, comme le fait d’avoir une marque, un nom de modèle, une
couleur, ou encore un nombre de roues.

Sans l’héritage, ces classes auront des lignes de code explicitement
similaires, à tel point que ces similarités pourront être
copiées-collées d’une classe à l’autre. En cas de modification, il
faudra alors répercuter les changements sur les deux classes, ou plus,
si d’autres ont été ajoutées entre-temps.

Avec l’héritage, une classe générale regroupant les similarités (et
qu’on pourra appeler “Véhicule”) sera héritée par les classes plus
spécifiques (Voiture et Moto). Ainsi, les éléments (membres) de la
classe “mère” Véhicule seront automatiquement transférés dans les
classes “filles” Voiture et Moto. Toutes modifications (ajouts /
suppressions) seront également et automatiquement transférées aux
classes filles.

Polymorphisme : Concept permettant à des éléments (objet) d’une même
nature (classe) de prendre plusieurs formes et d’exécuter une même
action (méthode) de manière différente.

Les voitures thermiques (à essence) et les voitures électriques sont
deux types de voitures qui partagent énormément de similarités et ont
un but commun, mais qu’on ne considère pas comme étant de même nature
à cause de leurs différences fondamentales de motorisation.

Elles possèdent pourtant les mêmes fonctionnalités comme démarrer le
moteur et accélérer, mais leur réalisation technique est totalement
différente. Un moteur thermique injecte de l’essence pour provoquer
une explosion, générant ainsi de la puissance transmise aux roues,
tandis qu’un moteur électrique utilise le courant alternatif de
l'électricité et l’électromagnétisme pour générer de la puissance.

En cela, on peut dire que les deux “véhicules” ont les mêmes
comportements (méthode) de base, mais des exécutions (implémentation)
différentes, ce qui relève du polymorphisme : un type d’objet
similaire, répondant aux mêmes besoins, mais différemment.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

40

11. Objets (Objects)

Objet : Instance composée d’attribut(s) et/ou de méthode(s), générée
à partir d'une classe. On construit un objet à partir d’un modèle
d’objet (un plan de conception), à savoir une classe en Java.

Instance : Exemplaire d’objet créé à partir d’une classe, aussi
appelé une instance de cette classe. Une instance, dans le contexte
de la technologie et de l'informatique, se réfère à une unique
occurrence d'une classe.

this : Mot-clé permettant de faire référence à l'instance (objet)
courante de la classe. Il permet de cibler un membre de l’instance.

Si on considère votre corps comme une instance (un exemplaire unique)
de la classe “Humain”, alors “this.prenom” réfèrera à votre prénom.

Une autre personne pourra également utiliser “this.prenom” pour faire
référence à son propre prénom.

Deux personnes possédant le même prénom restent deux instances
(exemplaires) bien distinctes. L’instruction “this.prenom” est
similaire, mais elle ne fait pas référence à la même instance.

public class Voiture {

private String marque;

private String modele;

/**

* Le constructeur de la classe Voiture va créer une instance

* (donc un exemplaire unique de cette classe, un objet)

* et va cibler les deux attributs de cette instance grâce à "this"

*

* L’utilisation du mot-clé "this" permet de distinguer les éléments

* * "this.marque" réfère à la variable d’instance

* * "marque" réfère au paramètre du constructeur

*/

public Voiture(String marque, String modele) {

this.marque = marque;

this.modele = modele;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

41

super : Mot-clé permettant de faire référence à un membre du parent
(classe mère) direct d'un enfant (classe fille).

Si une classe mère déclare un attribut x alors sa classe fille pourra
utiliser l’instruction “super.x” pour y accéder, même si cette
dernière possède également un attribut du même nom.

Le mot-clé super est souvent utilisé dans les constructeurs pour faire
appel au constructeur de la classe mère et ainsi éviter de réécrire
deux fois le même code.

public class Parent {

/**

* Constructeur de la classe Parent

*/

public Parent() {

System.out.println("Constructeur de la classe Parent");

}

}

public class Enfant extends Parent {

/**

* Constructeur de la classe Enfant

*/

public Enfant() {

super(); // Appel du constructeur de la classe Parent

System.out.println("Constructeur de la classe Enfant");

}

// Entrée de programme exécutable

public static void main(String[] args) {

Enfant enfant = new Enfant();

}

}

// Résultat (affichage) dans la console

Constructeur de la classe Parent

Constructeur de la classe Enfant

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

42

instanceof : Opérateur spécial permettant de vérifier si un objet
est une instance d'une classe spécifique, d’une classe mère
(héritage) ou d’une classe implémentant une interface.

Renvoie vrai (true) si l’instance est du type mentionné.

Particulièrement utile lorsqu’on fait usage de l’inférence de type.

Permet également de vérifier qu’un objet appartient à un type, avant
de réaliser une conversion (Casting) qui pourrait entraîner une
Exception dans le cas contraire.

var voiture = … ; // On suppose qu'un objet est affecté

if (voiture instanceof Voiture) {

System.out.println("Instance de la classe Voiture détectée !");

// Conversion (casting) de l'objet en type Voiture

Voiture voitureConvertie = (Voiture) voiture;

System.out.println("La conversion a été effectuée avec succès.");

}

else {

System.out.println("Il ne s'agit pas d'une Voiture.");

}

// Résultat (affichage) dans la console

Instance de la classe Voiture détectée !

La conversion a été effectuée avec succès.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

43

12. Constructeurs (Constructors)

Instanciation : Processus de création d'un objet grâce à un
constructeur. Lors de l'instanciation d’un objet, Java réserve un
emplacement dans la mémoire vive pour y stocker ses informations.

Constructeur : Méthode spécifique, portant le nom de sa classe, sans
type de retour et appelée pour la création d'une instance.

Si aucun constructeur n’est implémenté dans une classe, Java en
fournit automatiquement un, sans paramètre et affectant des valeurs
par défauts aux attributs de l’instance créée.

/**

* Ci-dessous, le code d’une classe nommée Voiture sans aucun attribut

* et possédant un constructeur permettant d’instancier des objets

*/

public class Voiture {

/**

* Si ce constructeur n’avait pas été implémenté, Java en aurait

* automatiquement fourni un similaire, par défaut.

*/

public Voiture() { }

}

new : Opérateur utilisé avec le constructeur d’une classe pour
déclencher le processus d’instanciation, créant ainsi un objet.

/**

* Cette instruction va demander à Java de créer un espace dans la

* mémoire afin de stocker l’objet créé. La référence de cet

* espace mémoire sera ensuite affectée à la variable "obj".

*/

Object obj = new Object();

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

44

Object : Classe Reine de la Programmation Orientée Objet en Java.

Toutes les classes héritent (héritage) de la classe Object en Java,
même si ce n’est pas directement visible dans le code.

Elle fournit des méthodes (méthode) de base comme equals(), hashcode()
ou encore toString(), qui seront détaillées dans la suite de ce guide.

/**

* Même si l’héritage n’est pas visible avec le mot-clé extends Object

* la classe Voiture hérite bel et bien de la classe Reine Object.

*/

public class Voiture {

}

Object.equals(Object obj) : Détermine l’égalité entre deux objets.

Renvoie vrai (true) si les objets sont égaux, faux (false) sinon.

Par défaut, cette méthode compare les références mémoires des deux
objets pour vérifier qu’il s'agit bien du même élément (dans le même
espace mémoire de la JVM).

Elle est souvent redéfinie (Override) dans les classes (classe) pour
comparer les valeurs de leurs membres (membre) et ainsi faire une
comparaison fonctionnelle plutôt que technique.

Voiture voiture1 = new Voiture("Ferrari", "F480");

Voiture voiture2 = new Voiture("Lamborghini", "Urus");

boolean egalite = voiture1.equals(voiture2); // false

Object.hashCode() : Retourne le code hash (Hachage) de l’objet.

Utilisé par les éléments de type Collection<E> basés sur le hash,
comme HashSet<E>, permettant un accès aux éléments plus efficace.

Voiture voiture = new Voiture("Ferrari", "F480");

System.out.println(voiture.hashCode());

// Résultat (affichage) dans la console

1791741888

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

45

Object.toString() : Retourne une représentation de l’objet sous la
forme d’une chaîne de caractères (String).

L’implémentation par défaut renvoie la forme: [nom_classe]@[hashCode].

Elle est souvent redéfinie (Override) par les classes (classe) pour
avoir une représentation plus lisible des éléments dans un programme.

Voiture voiture = new Voiture("Ferrari", "F480");

System.out.println(voiture.toString());

// Résultat (affichage) dans la console

com.jiraws.supercarproject.voiture.Voiture@6acbcfc0

Object.getClass() : Retourne la classe de l’objet.

Permet de connaître précisément le type de l’objet concerné, en
comparaison de l’opérateur instanceof qui peut renvoyer vrai (true)
s'il y a un lien d’héritage entre l’objet et la classe indiquée.

public class Voiture extends Vehicule {

public static void main(String[] args){

Voiture voiture = new Voiture();

// La classe Voiture hérite de Vehicule, la condition est valide

if (voiture instanceof Vehicule) {

System.out.println("Instance de Véhicule détectée !");

System.out.println(voiture.getClass());

}

else {

System.out.println("Il ne s'agit pas d'un Véhicule.");

}

}

}

// Résultat (affichage) dans la console

Instance de Véhicule détectée !

class com.jiraws.supercarproject.voiture.Voiture

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

46

13. Classes (Classes)

class (Classe) : Plan de conception permettant de définir la
structure (membre) qu’auront les objets (objet) qu’elle créera.

La représentation d’une voiture en objet (POO) peut être la suivante:

● Attributs (données) : Elle possède un nom de modèle, une marque,
une couleur, ou encore un nombre de roues prédéterminé.

● Méthodes (comportements) : Elle a la capacité d’avancer, de
freiner ou encore d’activer la climatisation.

public class Voiture {

/**

* Attributs (Variables d’instance)

*/

public String modèle;

public String marque;

public Couleur couleur;

public int nombreRoues;

/**

* Méthodes (Comportements)

*/

public void avancer() {

// Code pour faire avancer la voiture

}

public void freiner() {

// Code pour faire freiner la voiture

}

public void activerClimatisation() {

// Code pour activer la climatisation

}

public void desactiverClimatisation() {

// Code pour activer la climatisation

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

47

Définition : Réfère à la spécification complète d'un élément.

● La définition d’une classe inclut sa déclaration ainsi que
l'implémentation de son corps : attribut(s), méthode(s), etc.

● La définition d’une méthode inclut son nom, son bloc de code,
ses paramètres (paramètre), ainsi que son type de retour.

● La définition d’une variable inclut sa déclaration (type, nom)
et éventuellement son initialisation.

Membre : Terme référant à une composante de classe. Il peut cibler
une variable (attribut), une fonction (méthode), une classe
imbriquée ou encore une interface implémentée.

L’attribut “marque” de la classe Voiture, ou encore sa méthode lui
permettant de démarrer le moteur, font partie de ses membres.

Attribut : Variable appartenant à une classe (static) ou à une
instance (objet) créée à partir de cette dernière.

C’est la dénomination spécifique d’une variable en raison de son
appartenance à une classe ou à un objet. On peut voir ce terme comme
un synonyme de “variable”, mais son usage dépend du contexte (là où se
trouve la variable, dans une classe, ou pas).

Méthode : Fonction définie dans une classe ou dans une interface.

Aussi appelée “comportement” d’un objet. Comme pour le terme attribut,
le terme “méthode” est un synonyme de “fonction” qui dépend du
contexte (là où se trouve la fonction).

Override (Redéfinition) : Réécriture du corps d’une méthode pour
remplacer celui reçu via l’héritage d’une classe ou d’une interface.

public class Voiture {

private String marque;

private String modele;

// Réécriture d’un code plus adapté de la méthode Object.toString()

@Override

public String toString() {

return "Modèle " + this.modele + " de la marque " + this.marque;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

48

Overload (Surcharge) : Implémentation multiple d’une méthode
possédant le même nom mais ayant un type de retour et/ou des
paramètres (paramètre) différents.

Le nom des méthodes est important car il permet de structurer
logiquement le code de notre application.

La surcharge est un bon exemple mettant en évidence l’importance de
bien nommer les éléments:

● Cas 1 (Bonne pratique) : On surcharge correctement une méthode
pour additionner des nombres, et ainsi, on facilite le travail
des autres développeurs lorsqu’ils liront ce code.

// Méthode pour additionner deux entiers

public int add(int a, int b) {

return a + b;

}

// Méthode surchargée pour additionner trois entiers

public int add(int a, int b, int c) {

return a + b + c;

}

● Cas 2 (Mauvaise pratique) : On ne surcharge pas la méthode, en
préférant plutôt la création d’une autre distincte, alors
qu’elles ont un objectif et un sens très similaires.

// Méthode pour additionner deux entiers

public int addition(int a, int b) {

return a + b;

}

// Méthode pour additionner trois entiers

public int additionDeTroisNombres(int a, int b, int c) {

return a + b + c;

}

Classe Utilitaire : Une classe déclarant un ensemble de méthodes
(méthode) statiques (static) offrant des fonctionnalités communes ou
réutilisables, sans nécessiter l'instanciation d'objets.

On peut voir une classe utilitaire comme une bibliothèque.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

49

14. Héritage (Inheritance)

extends (Extension) : Mot-clé permettant de lier par l’héritage une
classe fille à sa classe mère.

Les membres (membre) de la classe mère sont alors transmis à la
structure de la classe fille.

En Java, une classe ne peut hériter que d’une seule autre classe.

public class Voiture extends Vehicule { ... }

abstract (Abstraite) : Mot-clé permettant de rendre une classe ou
une méthode abstraite.

● Une classe abstraite est une classe qui perd la capacité de
créer (instanciation) des objets grâce à un constructeur.

Elle conserve néanmoins son rôle de modèle d’objet.

public abstract class Vehicule { ... }

● Une méthode abstraite est une méthode déclarée, mais sans corps
de méthode (bloc de code) qui devra être redéfini (Override) par
les classes filles.

Une classe contenant une méthode abstraite doit également être
déclarée comme abstraite.

public abstract class Vehicule {

/**

* Chaque type de véhicule (voiture, moto, avion, bateau) démarre

* d’une façon bien spécifique.

*

* Il est donc cohérent de rendre la méthode demarrer() abstraite

* pour que les futures classes filles (Voiture, Moto, Avion, etc.)

* soient contraintes de redéfinir leurs codes en fonction de

* leurs spécificités de fonctionnement.

*/

public abstract void demarrer();

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

50

sealed (Scellée) : Permet de rendre une classe ou une interface
“scellée”, c’est à dire qu’elle ne peut être héritée (héritage) que
par les éléments définis à l’avance avec le mot-clé permits.

C’est une approche visant à mieux contrôler l’héritage dans un projet,
offrant ainsi aux développeurs plus de sécurité quant à l’utilisation
d’une classe ou d’une interface.

permits : Permet de spécifier explicitement les classes (classe) et
les interfaces (interface) qui peuvent étendre un type sealed.

Les classes qui hériteront devront être soit final soit non-sealed.

public sealed class Vehicule permits Voiture, Camion { ... }

/**

* La classe Voiture n’aura (à priori) pas de classe fille dans le

* projet, on la rend donc non-héritable grâce au modificateur final

*/

final class Voiture extends Vehicule { ... }

non-sealed : Permet à une classe ou à une interface héritant
(héritage) un type sealed, de devenir un type héritable à nouveau.

Offre une flexibilité d'héritage au sein d'une hiérarchie scellée,
permettant à certaines branches de cette hiérarchie de rester ouvertes
à l'extension. Son utilisation doit être faite avec parcimonie, car
elle va à l’encontre du principe de sceller des éléments.

public sealed class Vehicule permits Camion { ... }

/**

* La classe Camion possèdera au moins une classe fille dans le

* projet, on la rend donc à nouveau héritable grâce à non-sealed

*/

non-sealed class Camion extends Vehicule { ... }

/**

* La classe CamionElectrique hérite sans contrainte de la classe Camion

*/

public class CamionElectrique extends Camion { ... }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

51

15. Interface (Interface)

interface (Interface) : Une “sorte” de classe ne pouvant contenir
aucun attribut, ne pouvant pas créer d’objet, et ne déclarant que
des méthodes abstraites (abstract) qui seront redéfinies (Override)
par les classes qui les implémenteront (implements).

On considère plus généralement une interface comme un “contrat”
d’utilisation : cette dernière déclare des méthodes abstraites,
forçant ainsi les classes qui les implémenteront à les redéfinir avec
le code correspondant à leurs spécificités.

Une interface va permettre de regrouper les méthodes propres à un
comportement, mais qui n’a pas de lien direct avec la représentation
qu’on se fait d’un objet (voir l’exemple ci-dessous).

/**

* Une voiture et une maison n’ont rien à voir conceptuellement

* mais peuvent partager une fonctionnalité commune d’air climatisée.

*

* Les deux classes Voiture et Maison partageront alors une interface

* nommée “Climatiseur”, déclarant les méthodes nécessaires à ce besoin.

*/

public interface Climatiseur {

public void activerClimatisation();

public void desactiverClimatisation();

public void reglerTemperature(int temperature);

/**

* Une méthode pourra proposer un code par défaut, assurant ainsi

* que ce dernier soit utilisé automatiquement si la classe

* implémentant l’interface ne l’a pas redéfinit.

*/

public default void soufflerAir() {

// Code de l’implémentation par défaut

}

}

Une interface peut en étendre (héritage) une autre, comme une classe
peut le faire avec une autre classe.

public interface InterfaceA extends InterfaceB { ... }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

52

implements : Mot-clé permettant à une classe d’implémenter une
(ou plusieurs) interface(s).

Une classe déclarant l’implémentation d’une interface est alors
contrainte de redéfinir (Override) ses méthodes déclarées. Si elle ne
le fait pas (entièrement), une erreur de compilation aura lieu,
empêchant ainsi le programme de pouvoir démarrer.

Une classe abstraite (abstract) déclarant l’implémentation d’une
interface pourra s’abstenir de redéfinir (Override) les méthodes
importées, en laissant ce travail à ses classes filles.

Contrairement à l’héritage de classe qui est unique en Java, une
classe pourra implémenter plusieurs interfaces si nécessaire.

public interface Climatiseur {

public void activerClimatisation();

public void desactiverClimatisation();

public void reglerTemperature(int temperature);

}

public class Voiture implements Climatiseur {

@Override

public void activerClimatisation() {

// Implémentation du code spécifique…
}

@Override

public void desactiverClimatisation() {

// Implémentation du code spécifique…
}

@Override

public void reglerTemperature(int temperature) {

// Implémentation du code spécifique…
}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

53

16. Énumérations (Enumerations)

enum (Énumération) : Type de classe spécifiquement conçu pour
représenter une suite d’éléments fixes (constante).

Visuellement différente d’une classe standard, une énumération offre
néanmoins les mêmes fonctionnalités à l’exception de l’héritage.

Une enum ne peut pas utiliser l’héritage, car en interne elle est
implicitement déclarée comme final et étend la classe java.lang.Enum
même si ce n’est pas visible dans le code (comme pour l’héritage
universel de la classe Object).

Deux bons exemples d’application des énumérations sont les jours de la
semaine (de lundi à dimanche) et les directions cardinales (nord, sud,
est, ouest). Ce sont des “suites” (listes) d’éléments fixes, qui ne
vont à priori pas changer dans votre application une fois implémentés.

public enum PointCardinal {

/**

* Une suite de constantes ("NORD", "EST", "SUD", "OUEST")

* avec un libellé ("N", "E", "S", "O") pour chacune d’entre elles.

*/

NORD("N"),

EST("E"),

SUD("S"),

OUEST("O");

// Attribut pour le libellé court ("N", "E", "S", "O")

private final String libelleCourt;

// Constructeur privé pour l'énumération

PointCardinal(String libelle) {

this.libelleCourt = libelle;

}

// Méthode publique (Getter) pour accéder au libellé court

public String getLibelleCourt() {

return libelleCourt;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

54

17. Modificateurs (Modifiers)

Modificateur : Catégorie de mot-clés qui changent la signification
d'une définition de classe, d’interface, de méthode ou de variable.

Parmi les modificateurs, on retrouve abstract et final que nous avons
croisé précédemment dans ce guide, ou encore ceux permettant de
modifier la visibilité: public, private, protected.

Le mot-clé static est un bon exemple de modificateur, car son simple
ajout change totalement l’appartenance d’un attribut (ou d’une
méthode) à une classe ou à une instance de cette dernière.

public class Voiture {

public static int nombreInstanceVoiture; // Attribut de classe

public int kilometrage; // Attribut d’instance

}

Visibilité : Mécanisme déterminant l'accessibilité d’un élément
(classe, interface, attribut ou méthode) au sein d'un programme.

Elle joue un rôle direct dans le principe d’Encapsulation, car elle
permet de limiter l’accès en lecture et en écriture des éléments.

On change la visibilité d’un élément grâce à l’utilisation d’un
modificateur de visibilité comme public, private ou protected.

public (public) : L’élément est visible dans tout le projet.

Déconseillé par défaut pour certains éléments : un attribut doit
rester privé, et une méthode ne doit être publique que s'il y a un
réel intérêt à ce que son accès par l’extérieur soit possible.

public class Voiture {

// Attribut public qui sera accessible de partout dans le projet

public int kilometrage;

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

55

private (privé) : L’élément n’est visible que par les autres membres
(membre) de sa classe ou de son interface.

Équivalent du “Secret Défense” : seuls les membres d’une même unité ne
peuvent connaître cet élément privé. Pour le reste du projet,
l’élément privé n’existe pas, il n’est ni visible, ni accessible.

Dans le cas d’une interface, la méthode déclarée privée devra posséder
un corps (bloc de code) car elle ne sera pas transmise à la classe
implémentant l’interface à cause de sa visibilité privée. Elle servira
alors de méthode interne, utilisable par les autres méthodes.

public class Voiture {

/**

* L’attribut (variable d’instance) "kilometrage" ne sera visible,

* et donc accessible et modifiable, que par les méthodes de

* la classe Voiture et sera inaccessible pour le reste.

*/

private int kilometrage;

}

protected (protégé) : L’élément est visible par les membres (membre)
de sa classe et de ses classes filles (héritage), ainsi que par les
autres éléments présents dans le même package.

On peut considérer cette visibilité comme un entre-deux de public et
private. Il est cependant non-applicable dans une interface.

package com.jiraws.supercarproject.voiture;

public class Voiture {

/**

* L’attribut (variable d’instance) "kilometrage" sera visible,

* et donc accessible et modifiable, par les méthodes de

* la classe Voiture, par les classes filles de la classe Voiture

* et par les éléments du package com.jiraws.supercarproject.voiture

*/

protected int kilometrage;

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

56

default (package-private) : L’élément est visible par les membres
(membre) de sa classe ou de son interface et par les éléments
présents dans le même package.

C’est une visibilité automatiquement appliquée à un élément
lorsqu’aucun modificateur n’est défini par le développeur.

À l’instar de la visibilité protected, la visibilité par défaut
n’inclut pas l’héritage, sauf si la classe fille concernée se trouve
dans le même package que la classe déclarant l’élément.

public class Voiture {

/**

* L’attribut (variable d’instance) "kilometrage" sera visible,

* et donc accessible et modifiable, par les méthodes de sa classe

* et par les éléments du package com.jiraws.supercarproject.voiture

*/

int kilometrage;

}

Getter (Accesseur) : Méthode permettant d’accéder (de lire) la
valeur d'un attribut privé (private) d'une classe.

Une méthode “getter” ne diffère en rien techniquement d’une autre
méthode standard pour le langage Java, il ne s’agit que d’une bonne
pratique respectant le grand principe d’Encapsulation en POO.

Bien qu’une méthode Getter soit souvent du code boilerplate, elle
offre néanmoins la possibilité d’ajouter une implémentation spécifique
à l’accès d’un attribut, comme par exemple en ne renvoyant qu’une
copie de la valeur de ce dernier, pour éviter une modification
involontaire en transmettant une référence.

public class Voiture {

// Invisible de l’extérieur, mais accessible grâce à son Getter

private String marque;

public String getMarque() {

return this.marque;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

57

Setter (Mutateur) : Méthode permettant de modifier (d’écrire) la
valeur d’un attribut privé (private) d’une classe.

Une méthode “setter” ne diffère en rien techniquement d’une autre
méthode standard pour le langage Java, il ne s’agit que d’une bonne
pratique respectant le grand principe d’Encapsulation en POO.

Même si une méthode Setter est souvent du code boilerplate, elle offre
néanmoins la possibilité d’ajouter une implémentation spécifique à la
modification de la valeur d’un attribut, comme par exemple en
empêchant certains changements qui pourrait fausser une information.

public class Voiture {

private int kilometrage;

/**

* Un exemple de méthode Setter protégeant son attribut

* d’une mauvaise modification, ou du moins, d’une modification

* qui ne devrait pas avoir lieu.

*/

public void setKilometrage(int nouveauKilometrage) {

// Le kilométrage d’une voiture ne peut qu’augmenter

if(this.kilometrage < nouveauKilometrage) {

// La modification est ignorée au profit d’une alerte

System.out.println("Réduction du kilométrage interdite.");

}

else {

this.kilometrage = nouveauKilometrage;

}

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

58

static : Modificateur impliquant qu'un membre appartient à une
classe plutôt qu'à une instance.

Un attribut ou une méthode ayant le modificateur static seront
partagés par toutes les instances de leur classe, sans pour autant
leur appartenir directement.

On fait ainsi la distinction entre:
● Un attribut de classe et un attribut d’instance
● Une méthode de classe et une méthode d’instance

public class Voiture {

/**

* Variable de classe partagée par chaque future instance

*/

private static long nombreInstanceVoiture = 0;

/**

* Variables d'instance qui seront uniques et propres à chaque

* future instance créée

*/

private String marque;

private int kilometrage;

}

native : Modificateur impliquant qu'une méthode est implémentée en
code natif en dehors du programme Java.

C’est-à-dire du code écrit dans un autre langage de programmation
comme C ou C++. Souvent utilisé pour accéder à des bibliothèques
(bibliothèque) système ou à des fonctions spécifiques au matériel qui
ne sont pas disponibles en Java.

Note: Vous ne croiserez que (très) rarement (voire jamais) ce
modificateur, mais il est quand même bon de connaître le grand concept
autour de ce dernier au cas où cela arriverait.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

59

18. Immutabilité (Immutability)

Immuable (Immutabilité) : Un objet est dit immuable lorsque son état
interne (valeurs de ses attributs (attribut)) ne peut pas être
modifié après sa création (instanciation).

Un type primitif est par nature immuable: lorsqu’on modifie sa valeur,
en interne du langage Java il ne s’agit pas d’une modification de la
valeur en elle-même, mais plutôt de la création d’une nouvelle valeur
qui est affectée à la variable.

Un type référence n’est immuable que si son état (valeurs de ses
attributs) ne peut pas être modifié après sa création, impliquant
donc que l’ensemble de ses champs ait le modificateur final.

L’inverse de l’immutabilité est la mutabilité, à savoir le fait d’être
mutable (et donc “changeable” / “modifiable”).

/**

* Cette implémentation de la classe Voiture permet de créer des

* objets immuables, car tous ses attributs sont déclarés finaux (final)

* et par conséquent ne pourront pas être modifiés après

* la création d’une instance de la classe.

*/

public final class Voiture {

private final String marque;

private final String modele;

public Voiture(String marque, String modele) {

this.marque = marque;

this.modele = modele;

}

public final String getMarque() {

return this.marque;

}

public final String getModele() {

return this.modele;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

60

final : Modificateur impliquant que l’élément concerné ne puisse
plus être modifié après sa création.

● Pour un type primitif: sa valeur (primitive) ne pourra pas être
changée après son initialisation.

● Pour un type référence: sa valeur (référence mémoire) ne pourra
pas être changée après son instanciation, mais son état (valeurs
de ses attributs) peut l’être si ce dernier n’est pas immuable.

● Pour une méthode: son corps ne pourra pas être redéfini
(Override) par une classe qui en héritera, assurant ainsi un
comportement unique dans toute l’arborescence (héritage).

● Pour une classe: elle devient non héritable et ne peut donc pas
avoir de classe fille, elle est la dernière de sa lignée.

/**

* La classe Voiture possède le modificateur final et ne pourra donc

* pas avoir de classe fille (extends Voiture)

*/

public final class Voiture {

/**

* Attribut primitif dont la valeur (primitive)

* ne peut pas être changée

*/

private final int anneeFabrication;

/**

* Attribut référence dont la valeur (référence mémoire de l’objet)

* ne peut pas être changée

*/

private final Moteur moteur;

public Voiture(int anneeFabrication, Moteur moteur) {

this.anneeFabrication = anneeFabrication;

this.moteur = moteur;

}

// Méthode ne pouvant être redéfinie (Override)

public final String getMarque() {

return this.marque;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

61

record : Type de classe spécifiquement conçu pour simplifier
l’implémentation d'objets immuables (Immutabilité) en générant
automatiquement le code de base (boilerplate) dans la classe.

Bien que le mot-clé class ne soit pas utilisé, le résultat final sera
bel et bien une classe immuable comme si vous l’aviez fait vous-même.

Un record va fournir, à la place du développeur, les implémentations
des méthodes de base comme le getter et le setter de chaque attribut
ainsi que equals(), hashCode(), et toString().

C’est une solution qui n’a pour but que de simplifier l’écriture du
code, comme par exemple avec l’auto-boxing et l’auto-unboxing.

public record Coordonnees(int x, int y) { }

/**

* Le (simple) code ci-dessus est équivalent au (long) code ci-dessous

*/

public class Coordonnees {

private final int x;

private final int y;

public Coordonnees(int x, int y) {

this.x = x;

this.y = y;

}

public int getX() { return this.x; }

public int getY() { return this.y; }

public int setX(int x) { this.x = x; }

public int setY(int y) { this.y = y; }

@Override

public boolean equals(Coordonnees c) { // Code du equals }

@Override

public int hashCode() { // Code du hashCode }

@Override

public String toString() { // Code du toString }

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

62

19. Types Enveloppes (Wrappers)

Wrapper (Enveloppe) : Classe contenant (enveloppant) un type
primitif et offrant diverses méthodes (méthode) propres à ce dernier
afin d’améliorer sa manipulation.

Les types enveloppes consomment plus de mémoire que les types
primitifs. Il faut donc les utiliser seulement si le type primitif
concerné ne répond pas correctement à notre besoin.

Byte : Classe Enveloppe (Wrapper) du type primitif byte.

Byte distanceSalleDeSport = 2;

Short : Classe Enveloppe (Wrapper) du type primitif short.

Short rayonPlaneteTerre = 6371;

Integer : Classe Enveloppe (Wrapper) du type primitif int.

Integer distanceTerreLune = 384400;

Long : Classe Enveloppe (Wrapper) du type primitif long.

Long distanceSoleilNeptune = 4500000000L;

Float : Classe Enveloppe (Wrapper) du type primitif float.

Float tailleMoyenHumain = 1.75F;

Double : Classe Enveloppe (Wrapper) du type primitif double.

Double approximationPi = 3.141592653589793;

Character : Classe Enveloppe (Wrapper) du type primitif char.

Character note = 'A';

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

63

Boolean : Classe Enveloppe (Wrapper) du type primitif boolean.

Boolean like = true;

Boolean dislike = false;

L’intérêt du type enveloppe Boolean est important à retenir, car ce
dernier étant un objet (et donc un type référence), il peut être
affecté à la valeur spéciale null, offrant ainsi des possibilités
ternaires (3) plutôt que binaires (2) :

● L’utilisateur a-t-il validé son adresse email ?

○ true (vrai) : l’adresse email a été validée.
○ false (faux) : l’adresse email n’est pas encore validée.
○ null (rien) : l’utilisateur n’a pas fourni d’adresse email.

Auto-boxing : Processus automatique par lequel Java convertit un
type primitif en sa classe enveloppe (Wrapper) correspondante
lorsqu’un objet est requis mais qu’une valeur primitive est fournie.

Fonctionnalité ajoutée au langage Java pour faciliter l’écriture du
code. Il faut cependant garder en tête que ce processus de conversion
automatique est coûteux en termes de performance.

Integer age = new Integer(25); // Approche dépréciée

Integer age = 25; // Usage de l'auto-boxing (primitif -> enveloppe)

Auto-unboxing : Processus automatique inverse de l’auto-boxing par
lequel Java convertit un type enveloppe (Wrapper) en son type
primitif correspondant lorsqu’une valeur primitive est requise mais
qu’un objet est fourni.

Fonctionnalité ajoutée au langage Java pour faciliter l’écriture du
code. Comme pour l’auto-boxing, il faut garder en tête que ce
processus est coûteux en termes de performance.

Integer ageEnveloppe = 25; // Auto-boxing (primitif -> wrapper)

int agePrimitif = ageEnveloppe; // Auto-unboxing (wrapper -> primitif)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

64

Casting (Conversion) : Conversion explicite d’un type vers un autre.

C’est une opération qui présente des risques et que les développeurs
doivent considérer avant de l’utiliser. L’erreur la plus courante est
la perte d’une partie des informations, comme par exemple en
convertissant un float (nombre à virgule) en int (nombre entier), ce
qui entraîne la perte des valeurs après la virgule (10.55 devient 10).

Pour un type primitif : on peut faire une conversion (casting) pour
éviter la perte de données lors d’une opération arithmétique.

/**

* On s’apprête à diviser la valeur des deux variables ci-dessous.

* Le résultat attendu de 5 / 2 est donc 2.5

*/

int a = 5;

int b = 2;

// Division sans faire explicitement la conversion du résultat

float c = a / b;

// Division en faisant explicitement la conversion du résultat

float d = (float) a / b;

/**

* La différence entre les deux résultats s’explique par l’ordre

* d’exécution des instructions:

* 1. Si une conversion est demandée, Java convertit les opérandes

* 2. Java exécute l’opération arithmétique (a / b)

*

* Sans cette étape de conversion (casting), Java va réaliser

* l’opération arithmétique sur deux entiers (int) et par

* conséquent va tronquer le résultat:

* * 2.5 devient 2 (int) puis devient 2.0 pour matcher le type float

*

* Avec cette étape de conversion (casting), Java va convertir

* les opérandes (en float) puis réaliser l’opération arithmétique

* manipulant ainsi des types compatibles avec les nombres à virgule.

*/

System.out.println("Résultat sans conversion : " + c);

System.out.println("Résultat avec conversion : " + d);

// Résultat (affichage) dans la console

Résultat sans conversion : 2.0

Résultat avec conversion : 2.5

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

65

Pour un type référence : on peut faire une conversion (casting) d’un
type vers un autre, si les deux éléments partagent une hiérarchie de
classe en commun. Requiert une vérification au préalable avec
l’opérateur instanceof pour s’assurer de la réussite de la conversion,
sans quoi une ClassCastException sera levée et arrêtera le programme.

public class Animal {

public void manger() {

System.out.println("Cet animal mange.");

}

}

public class Chien extends Animal {

public void aboyer() {

System.out.println("Le chien aboie.");

}

public static void main(String[] args) {

// Instanciation d’un Chien dans une variable Animal

Animal animal = new Chien();

// La méthode manger() est accessible par le type Animal

animal.manger();

// La méthode aboyer() n’est pas accessible par le type Animal

animal.aboyer(); // Erreur de compilation (ligne à supprimer)

/**

* Vérification de l'appartenance à une hiérarchie commune.

* La condition est valide car Chien extends Animal.

*/

if (animal instanceof Chien) {

// Conversion explicite du type Animal en type Chien

Chien chien = (Chien) animal;

// La méthode Chien.aboyer() est désormais accessible

chien.aboyer();

}

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

66

20. Manipulation de Texte (String)

String : Classe permettant de représenter et de manipuler du texte.

Techniquement appelées des “chaînes de caractères” en raison de leur
composition : des caractères (char) les uns à la suite des autres.

Rappel important : En Java, la valeur d’une chaîne de caractères
(String) est entre “ “ (guillemets) et la valeur d’un caractère (char)
est entre ‘ ‘ (apostrophes).

/**

* Pour faciliter l’écriture du code en évitant d’avoir à faire appel

* systématiquement à un constructeur, le langage Java permet une

* instanciation simplifiée des chaînes de caractères (String)

*/

String nomFormation = "JavaCore";

/**

* On peut voir la valeur "JavaCore" comme un tableau d’éléments char

* * ['J', 'a', 'v', 'a', 'C', 'o', 'r', 'e']

* Soit en valeurs décimales (table de caractères Unicode)

* * [74 , 97 , 118, 97 , 67 , 111, 114, 101]

*/

Concaténation : Action de concaténer, à savoir le fait de joindre
des chaînes de caractères (String) pour en former une nouvelle.

String nomFormation = "JavaCore";

String nomFormateur = "JirAWS";

// Concaténation des trois chaînes de caractères (String)

String concatenation = nomFormation + " par " + nomFormateur;

System.out.println(concatenation);

// Résultat (affichage) dans la console

JavaCore par JirAWS

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

67

Regex (Expression Régulière) : Technique (puissante) et flexible de
recherche et de manipulation de chaînes de caractères (String) basée
sur des motifs permettant de spécifier des règles d’identification
des séquences de caractères.

Attention : Les expressions régulières ont une complexité cognitive
très élevée. Même un développeur expérimenté aura besoin d’un temps
d’analyse pour bien appréhender une regex complexe.

// Adresse mail à vérifier

String email = "contact@jiraws.com";

/**

* Expression régulière basique pour la vérification de mail.

* Elle correspond à un format d’adresse email basique : xxx@yyy.zzz

*/

String regex = "[\\w.-]+@\\w+\\.\\w+";

// Instanciation d’un compilateur de regex

Pattern pattern = Pattern.compile(regex);

/**

* Instanciation d’un matcheur (comparateur) qui fera la vérification

* entre la regex et l’adresse email fournies

*/

Matcher matcher = pattern.matcher(email);

/**

* Cas où le matcheur trouve bien une correspondance

* entre la regex et l’adresse email (String).

*/

if (matcher.matches()) {

System.out.println(email + " est une adresse email valide.");

} else {

System.out.println(email + " n'est pas une adresse email valide.");

}

// Résultat (affichage) dans la console

contact@jiraws.com est une adresse email valide

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

68

Text Blocks (Blocs de Texte) : Permet de définir des chaînes de
caractères (String) sur plusieurs lignes, de manière lisible.

Particulièrement utile pour l’écriture de contenus spécifiques :

● HTML : HyperText Markup Language
● JSON : JavaScript Object Notation
● SQL : Structured Query Language

String basicHTML = """

<html>

<body>

<p>Hello, World!</p>

</body>

</html>

""";

System.out.println("Bloc de texte : ");

System.out.println(basicHTML);

// Résultat (affichage) dans la console

Bloc de texte :

<html>

<body>

<p>Hello, World!</p>

</body>

</html>

String.length() : Retourne la longueur de la chaîne de caractères.

Souvent utilisé en la combinant avec une boucle for et la méthode
String.charAt(int index) pour itérer sur chaque caractère.

String nomFormation = "JavaCore"; // Un texte composé de 8 caractères

System.out.println("Taille du texte : " + nomFormation.length());

// Résultat (affichage) dans la console

Taille du texte : 8

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

69

String.charAt(int index) : Renvoie le caractère (char) se trouvant à
l’index (position) en argument dans la chaîne de caractères.

String nomFormation = "JavaCore";

System.out.println("Premier caractère : " + nomFormation.charAt(0));

System.out.println("Second caractère : " + nomFormation.charAt(1));

System.out.println("Troisième caractère : " + nomFormation.charAt(2));

System.out.println("Quatrième caractère : " + nomFormation.charAt(3));

System.out.println("Cinquième caractère : " + nomFormation.charAt(4));

System.out.println("Sixième caractère : " + nomFormation.charAt(5));

System.out.println("Septième caractère : " + nomFormation.charAt(6));

System.out.println("Huitième caractère : " + nomFormation.charAt(7));

// Résultat (affichage) dans la console

Premier caractère : J

Second caractère : a

Troisième caractère : v

Quatrième caractère : a

Cinquième caractère : C

Sixième caractère : o

Septième caractère : r

Huitième caractère : e

String.substring(int beginIndex, int endIndex) : Renvoie la partie
de la chaîne de caractères entre les index (position) en argument.

String nomFormation = "JavaCore";

String java = nomFormation.substring(0, 4);

System.out.println("Nom découpé : " + java);

// Résultat (affichage) dans la console

Nom découpé : "Java"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

70

String.split(String regex) : Sépare la chaîne de caractères pour
chaque correspondance de l’expression en argument, et renvoie un
tableau contenant les éléments séparés.

String nomFormation = "Java_Core";

String[] nomFormationSepare = nomFormation.split("_");

System.out.println("Nom séparé par '_' : " + nomFormationSepare);

// Résultat (affichage) dans la console

Nom séparé par '_' : ["Java", "Core"]

String.trim() : Renvoie une copie de la chaîne de caractères, sans
les espaces vides au début et à la fin (s’il y en a).

Très pratique pour corriger une potentielle faute de frappe lorsqu’un
utilisateur entre une information dans un formulaire.

String nomFormation = " JavaCore ";

System.out.println("Nom après trim : " + nomFormation.trim());

// Résultat (affichage) dans la console

Nom après trim : "JavaCore"

String.replaceAll(String target, String replacement) : Renvoie une
chaîne de caractères, avec les correspondances de l’argument target
remplacées par la valeur de l’argument remplacement.

String nomFormation = "JavaCore";

String futureFormation = nomFormation.replaceAll("Java", "Spring");

System.out.println("Nom de la future formation : " + futureFormation);

// Résultat (affichage) dans la console

Nom de la future formation : "SpringCore"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

71

String.startsWith(String prefix) : Renvoie vrai (true) si la chaîne
de caractères commence par le prefix en argument.

String nomFormation = "JavaCore";

boolean commenceParJava = nomFormation.startsWith("Java");

boolean commenceParCore = nomFormation.startsWith("Core");

System.out.println("Le nom commence par 'Java' : " + commenceParJava);

System.out.println("Le nom commence par 'Core' : " + commenceParCore);

// Résultat (affichage) dans la console

Le nom commence par 'Java' : true

Le nom commence par 'Core' : false

String.endsWith(String suffix) : Renvoie vrai (true) si la chaîne de
caractères se termine par le suffix en argument.

String nomFormation = "JavaCore";

boolean termineParCore = nomFormation.endsWith("Core");

boolean termineParJava = nomFormation.endsWith("Java");

System.out.println("Le nom termine par 'Core' : " + termineParCore);

System.out.println("Le nom termine par 'Java' : " + termineParJava);

// Résultat (affichage) dans la console

Le nom termine par 'Core' : true

Le nom termine par 'Java' : false

String.toLowerCase() : Renvoie une copie de la chaîne de caractères
en minuscule.

String nomFormation = "JavaCore";

String nomEnMinuscule = nomFormation.toLowerCase();

System.out.println("Nom en minuscule : " + nomEnMinuscule);

// Résultat (affichage) dans la console

Nom en minuscule : "javacore"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

72

String.toUpperCase() : Renvoie une copie de la chaîne de caractères
en majuscule.

String nomFormation = "JavaCore";

String nomEnMajuscule = nomFormation.toUpperCase();

System.out.println("Nom en majuscule : " + nomEnMajuscule);

// Résultat (affichage) dans la console

Nom en majuscule : "JAVACORE"

String.indexOf(String target) : Renvoie l'index (position) de la
première occurrence de la chaîne spécifiée par le paramètre target.

String nomFormation = "JavaCore";

int positionA = nomFormation.indexOf("a");

int positionCore = nomFormation.indexOf("Core");

System.out.println("Position de la lettre 'a' : " + positionA);

System.out.println("Position du début de 'Core' : " + positionCore);

// Résultat (affichage) dans la console

Position de la lettre 'a' : 1

Position du début de 'Core' : 4

String.lastIndexOf(String target) : Renvoie l’index (position) de la
dernière occurrence de la chaîne spécifiée par le paramètre target.

String nomFormation = "JavaCore";

int positionA = nomFormation.lastIndexOf("a");

int positionCore = nomFormation.lastIndexOf("Java");

System.out.println("Dernière position de la lettre 'a' : " + positionA);

System.out.println("Dernière position de 'Core' : " + positionCore);

// Résultat (affichage) dans la console

Dernière position de la lettre 'a' : 3

Dernière position de 'Core' : 4

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

73

String.equals(String str) : Renvoie vrai (true) si les deux chaînes
de caractères sont identiques, caractère par caractère.

La classe String redéfinit (Override) la méthode héritée de la classe
Mère / Reine (Object) Object.equals(Object obj), pour proposer une
implémentation adaptée aux chaînes de caractères.

System.out.println("JavaCore".equals("JavaCore")); // true

System.out.println("JavaCore".equals("javacore")); // false

System.out.println("JavaCore".equals("abcdefgh")); // false

// Résultat (affichage) dans la console

true

false

false

21. Manipulation Numérique (Number)

BigInteger : Classe permettant de manipuler des nombres entiers de
très grande taille, dépassant les limites du type primitif long.

Utilisé par des applications nécessitant une précision mathématique
élevée, comme dans la cryptographie, le calcul de grands nombres
premiers, ou pour des systèmes financiers.

BigInteger grandEntier1 = new BigInteger("12345678901234567890");

BigInteger grandEntier2 = new BigInteger("98765432109876543210");

// Multiplication de ces deux grands nombres

BigInteger produit = grandEntier1.multiply(grandEntier2);

System.out.println("Résultat : " + produit);

// Tentative de conversion du résultat en long

long conversion = produit.longValue();

System.out.println("Valeur tronquée (dépassement) : " + conversion);

// Résultat (affichage) dans la console

Résultat : 1219326311370217952237463801111263526900

Valeur tronquée (dépassement) : 1331246629686034420

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

74

BigDecimal : Classe permettant de manipuler des nombres décimaux de
grande précision, dépassant les limites du type primitif double.

Essentielle dans les applications nécessitant une grande précision des
calculs décimaux, comme en finance pour le calcul des taux d'intérêt,
la facturation, et la comptabilité, où les erreurs d'arrondis des
types à virgule flottante (float et double) ne sont pas acceptables.

BigDecimal grandDecimal1 = new BigDecimal("1234567890123456.123456789");

BigDecimal grandDecimal2 = new BigDecimal("9876543210987654.987654321");

// Multiplication de ces deux grands décimaux

BigDecimal produit = grandDecimal1.multiply(grandDecimal2);

System.out.println("Résultat : " + produit);

// Tentative de conversion du résultat en double

double conversion = produit.doubleValue();

System.out.println("Valeur tronquée (dépassement) : " + conversion);

// Résultat (affichage) dans la console

Résultat : 12193263113702173772138374308793.945269013112635269

Valeur tronquée (dépassement) : 1.2193263113702175E31

Integer.parseInt(String str) : Tente de convertir la chaîne de
caractères passée en paramètre en valeur entière primitive (int),
puis renvoie le résultat en cas de succès.

C’est une méthode très pratique pour convertir des chaînes de
caractères en entiers, permettant ainsi de manipuler les informations
avec le type le plus adapté.

Attention : Une tentative de conversion d’une valeur non convertible
en valeur entière générera une erreur NumberFormatException.

int age1 = Integer.parseInt("25"); // age1 = 25

int age2 = Integer.parseInt("AZ"); // NumberFormatException

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

75

Integer.valueOf(String str) : Tente de convertir la chaîne de
caractères passée en paramètre en type enveloppe entier (Integer),
puis renvoie le résultat en cas de succès.

C’est une méthode similaire à Integer.parseInt(String str) avec pour
seule différence le type de retour (Integer au lieu de int).

Attention: Une tentative de conversion d’une valeur non convertible en
valeur entière générera une erreur NumberFormatException.

Integer age1 = Integer.valueOf("25"); // age1 = 25

Integer age2 = Integer.valueOf("AZ"); // NumberFormatException

Math : Classe Utilitaire contenant des méthodes (méthode) permettant
de réaliser les opérations mathématiques, de la simple addition aux
calculs trigonométriques plus complexes.

Une classe dont il faut se souvenir pour éviter l’implémentation de
code inutile (et potentiellement défectueuse).

Math.min(int a, int b) : Renvoie la plus petite valeur des deux
passées en argument.

int plusPetit = Math.min(4, 10);

System.out.println("Résultat : " + plusPetit);

// Résultat (affichage) dans la console

Résultat : 4

Math.max(int a, int b) : Renvoie la plus grande valeur des deux
passées en argument.

int plusGrand = Math.max(4, 10);

System.out.println("Résultat : " + plusGrand);

// Résultat (affichage) dans la console

Résultat : 10

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

76

Math.random() : Renvoie une valeur aléatoire de type double,
comprise entre 0 et 1.

double nombreAleatoire = Math.random();

System.out.println("Nombre aléatoire : " + nombreAleatoire);

// Résultat (affichage) dans la console

Nombre aléatoire : 0.9246716297487397

On peut facilement générer des nombres aléatoires entre 0 et 100 en
combinant les méthodes Math.random() et Math.round(double a).

double nombreAleatoire = Math.random();

double multiplicationPar100 = nombreAleatoire * 100;

long resultatArrondi = Math.round(multiplicationPar100);

System.out.println("Nombre aléatoire sur 100 : " + resultatArrondi);

// Résultat (affichage) dans la console

Nombre aléatoire sur 100 : 88

Math.round(double a) : Renvoie la valeur entière arrondie la plus
proche de la valeur passée en argument.

long valeurArrondie1 = Math.round(4.25);

long valeurArrondie2 = Math.round(4.75);

System.out.println("Valeur arrondie 1 : " + valeurArrondie1);

System.out.println("Valeur arrondie 2 : " + valeurArrondie2);

// Résultat (affichage) dans la console

Valeur arrondie 1 : 4

Valeur arrondie 2 : 5

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

77

Math.abs(int a) : Renvoie la valeur absolue correspondant à la
valeur passée en argument.

int valeurAbsolue1 = Math.abs(-360);

int valeurAbsolue2 = Math.abs(3000);

System.out.println("Valeur absolue 1 : " + valeurAbsolue1);

System.out.println("Valeur absolue 2 : " + valeurAbsolue2);

// Résultat (affichage) dans la console

Valeur absolue 1 : 360

Valeur absolue 2 : 3000

Math.sqrt(double a) : Renvoie la valeur correspondant à la racine
carrée (SQRT : Square Root) de la valeur passée en argument.

double racineCarreeDe50 = Math.sqrt(50);

double racineCarreeDe100 = Math.sqrt(100);

System.out.println("Racine carrée de 50 : " + racineCarreeDe50);

System.out.println("Racine carrée de 100 : " + racineCarreeDe100);

// Résultat (affichage) dans la console

Racine carrée de 50 : 7.0710678118654755

Racine carrée de 100 : 10.0

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

78

22. Dates et Temps (Dates and Times)

Date : Classe permettant de représenter un moment spécifique dans le
temps, avec une précision à la milliseconde près.

Basée sur le nombre de millisecondes écoulées depuis le 1er Janvier
1970 à minuit UTC (Coordinated Universal Time).

Date maintenant = new Date();

System.out.println("Date actuelle : " + maintenant);

// Résultat (affichage) dans la console

Date actuelle : Fri Mar 15 18:18:18 CET 2024

LocalDate : Classe permettant de représenter une date sans heure, ni
fuseau horaire (jour / mois / année).

Utilisée pour les anniversaires, les jours fériés, etc.

LocalDate aujourdHui = LocalDate.now();

System.out.println("Aujourd'hui : " + aujourdHui);

// Résultat (affichage) dans la console

Aujourd'hui : 2024-03-15

LocalTime : Classe permettant de représenter un horaire sans date,
ni fuseau horaire (heure / minute / seconde).

Utilisée pour les heures d'ouverture, les horaires de trains, etc.

LocalTime maintenant = LocalTime.now();

System.out.println("Heure actuelle : " + maintenant);

// Résultat (affichage) dans la console

Heure actuelle : 18:20:49.586992600

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

79

LocalDateTime : Classe combinant LocalDate et LocalTime, permettant
de représenter une date (jour / mois / année) avec un horaire
(heure / minute / seconde), mais sans fuseau horaire.

Utilisée pour les dates entières ne nécessitant pas de fuseau horaire.

LocalDateTime maintenant = LocalDateTime.now();

System.out.println("Date et heure actuelles : " + maintenant);

// Résultat (affichage) dans la console

Date et heure actuelles : 2024-03-15T18:22:11.212587500

ZonedDateTime : Classe équivalente à LocalDateTime et intégrant la
notion de fuseau horaire.

Utilisée par les applications dont les utilisateurs opèrent sur
différents fuseaux horaires, évitant ainsi les erreurs d’horaires.

// Date complète avec le fuseau horaire en argument

ZonedDateTime dateParis = ZonedDateTime.now(ZoneId.of("Europe/Paris"));

System.out.println("Date et heure à Paris : " + dateParis);

// Résultat (affichage) dans la console

Date et heure à Paris : 2024-03-15T18:23:22.4611536+01:00 [Europe/Paris]

Duration : Classe utilisée pour représenter une quantité de temps en
termes d'heures, de minutes et de secondes.

Elle permet de calculer le temps écoulé entre deux dates / instants.

LocalTime debut = LocalTime.of(10, 30); // 10H30

LocalTime fin = LocalTime.of(17, 45); // 17H45

Duration duree = Duration.between(debut, fin);

System.out.println("Temps écoulé : " + duree.toSeconds() + " secondes");

// Résultat (affichage) dans la console

Temps écoulé : 26100 secondes

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

80

Gestion des Données 🧱
[Data Management]

23. Tableaux (Arrays)

Tableau (Array) : Structure de données permettant de stocker, sous
la forme d’une liste, un nombre fixe d'éléments du même type.

C’est la forme primitive des suites d’éléments en Java, qui est à la
base du fonctionnement des autres types similaires conceptuellement
comme List<E>, Set<E> ou encore Queue<E>.

int[] intArray = {1, 2, 3, 4};

int premiereValeur = intArray[0];

int derniereValeur = intArray[3];

System.out.println("Première valeur du tableau : " + premiereValeur);

System.out.println("Dernière valeur du tableau : " + derniereValeur);

// Résultat (affichage) dans la console

Première valeur du tableau : 1

Dernière valeur du tableau : 4

Il s’agit notamment du type utilisé pour le paramètre de la méthode
main (entrée de programme), que l’on croise très souvent :

/**

* La méthode main possède un paramètre qui en fait

* un tableau de chaînes de caractères (String)

*

* Ce tableau contient les arguments passés lors de l’exécution

* du fichier via une ligne de commande (java <classe> arg1 arg2)

*/

public static void main(String[] args) {

// On peut récupérer les arguments passés en paramètre

String arg1 = args[0];

String arg2 = args[1];

// Suite du code …
}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

81

24. Généricité (Generics)

Generics (Généricité) : Mécanisme permettant de définir des classes
(classe), des interfaces (interface) et des méthodes (méthode)
paramétrables avec un (ou plusieurs) type de données.

Peut aussi être lu “Multi Data Type” en raison de son objectif
principal qui est de permettre l’implémentation de code s’adaptant à
plusieurs (multi) types (type) de données (data).

C’est grâce à la généricité que les développeurs Java peuvent créer
des listes de chaînes de caractères (ArrayList<String>) ou de tout
autre type de données alors qu’il n’existe qu’une seule et unique
classe ArrayList<E> générique.

/**

* L’entête de déclaration de la classe ArrayList<E> contient

* le paramètre de type <E> impliquant que la classe soit générique.

*

* C’est en cela que l’instanciation de cette classe prend la forme

* * new ArrayList<String>();

* où <String> remplace <E> lors de l’exécution du code.

*/

public class ArrayList<E> extends AbstractList<E>

implements List<E>, … { ... }

/**

* La classe HashMap<K, V> possède une déclaration similaire

* à la différence qu’elle est paramétrée par deux types au lieu d’un.

*

* Son instanciation est alors similaire, à un paramètre près

* * new HashMap<String, Integer>();

* où <String, Integer> remplace <K, V> au moment de l’exécution du code

*/

public class HashMap<K, V> extends AbstractMap<K, V>

implements Map<K, V>, … { ... }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

82

25. Collections (Collections)

Collections : Classe Utilitaire contenant des méthodes permettant de
manipuler, trier ou encore rechercher les éléments dans un type
implémentant l’interface Collection<E> (List, Set, etc.).

C’est une classe dont vous aurez besoin en Java, tôt ou tard.

Collections.sort(List<T> list) : Tri les éléments de la liste passée
en argument selon leur ordre naturel, ou celui d’un comparateur.

Existe également avec un paramètre supplémentaire de type Comparable
pour trier les éléments selon ce dernier et non l’ordre naturel.

List<Integer> integerList = new ArrayList<>();

integerList.add(12);

integerList.add(254);

integerList.add(24);

integerList.add(65);

integerList.add(8);

integerList.add(982);

System.out.println("Ordre actuel : " + integerList);

// Tri la liste dans l’ordre naturel des éléments

Collections.sort(integerList);

System.out.println("Ordre après tri : " + integerList);

// Résultat (affichage) dans la console

Ordre actuel : [12, 254, 24, 65, 8, 982]

Ordre après tri : [8, 12, 24, 65, 254, 982]

Collection<E> : Interface générique (Généricité) déclarant les
méthodes (méthode) de base pour travailler avec des suites
d’éléments, également appelées des collections.

Une collection peut être vue comme une version grandement améliorée
d’un tableau : sa taille est dynamique (et non fixe), elle offre une
variété de méthodes de base permettant une manipulation plus précise
de ses éléments, et ses implémentations (telles que List<E> et Set<E>)
s’adaptent à des besoins bien spécifiques en programmation.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

83

Collection.add(E element) : Ajoute l’élément en argument à la fin de
la collection. Existe également avec un paramètre supplémentaire de
type int pour ajouter l’élément à une position précise.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("by JirAWS");

System.out.println("Liste initiale : " + texteList);

// Ajout de l’élément "JavaCore" à l’index 1 (2ème position)

texteList.add(1, "JavaCore");

System.out.println("Liste après ajout spécifique : " + texteList);

// Résultat (affichage) dans la console

Liste initiale : ["Formation", "by JirAWS"]

Liste après ajout spécifique : ["Formation", "JavaCore", "by JirAWS"]

Collection.remove(E element) : Supprime de la collection l'élément
passé en argument, si ce dernier est présent dans la collection.

Existe également avec un paramètre de type int pour supprimer
l’élément à une position précise.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

System.out.println("Liste initiale : " + texteList);

texteList.remove("JavaCore");

System.out.println("Liste après suppression 1 : " + texteList);

texteList.remove(0); // Suppression de l’élément à l’index 0

System.out.println("Liste après suppression 2 : " + texteList);

// Résultat (affichage) dans la console

Liste initiale : ["Formation", "JavaCore"]

Liste après suppression 1 : ["Formation"]

Liste après suppression 2 : []

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

84

Collection.get(int index) : Renvoie l’élément se trouvant à l’index
(position) passé en argument.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

String troisiemeElement = texteList.get(2); // "by JirAWS"

System.out.println("Liste actuelle : " + texteList);

System.out.println("Texte récupéré : " + troisiemeElement);

// Résultat (affichage) dans la console

Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]

Texte récupéré : "by JirAWS"

Collection.contains(E element) : Renvoie vrai (true) si l’élément
passé en argument est présent dans la collection.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

System.out.println("Liste actuelle : " + texteList);

boolean contientFormation = texteList.contains("Formation"); // true

boolean contientPython = texteList.contains("Python"); // false

System.out.println("Contient 'Formation' : " + contientFormation);

System.out.println("Contient 'Python' : " + contientPython);

// Résultat (affichage) dans la console

Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]

Contient 'Formation' : true

Contient 'Python' : false

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

85

Collection.size() : Renvoie le nombre d’éléments (taille) présents
dans la collection.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

int tailleListe = texteList.size(); // 3

System.out.println("Liste actuelle : " + texteList);

System.out.println("Taille de la liste : " + tailleListe);

// Résultat (affichage) dans la console

Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]

Taille de la liste : 3

Collection.clear() : Supprime tous les éléments de la collection.

Très utile pour réutiliser une collection déjà instanciée, évitant
ainsi d’utiliser davantage de mémoire.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

System.out.println("Liste avant 'clear' : " + texteList);

texteList.clear();

System.out.println("Liste après 'clear' : " + texteList);

// Résultat (affichage) dans la console

Liste avant 'clear' : ["Formation", "JavaCore", "by JirAWS"]

Liste après 'clear' : []

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

86

Collection.isEmpty() : Renvoie vrai (true) si la collection est
vide, autrement dit, si elle ne contient aucun élément.

Préférable à l’écriture manuelle d’une expression booléenne utilisant
la méthode Collection.size() == 0;

List<String> textList = new ArrayList<>();

System.out.println("Liste avant les ajouts : " + textList);

System.out.println("Résultat de 'isEmpty' : " + textList.isEmpty());

textList.add("Formation");

textList.add("JavaCore");

textList.add("by JirAWS");

System.out.println("Liste après les ajouts : " + textList);

System.out.println("Résultat de 'isEmpty' : " + textList.isEmpty());

// Résultat (affichage) dans la console

Liste avant les ajouts : []

Résultat de 'isEmpty' : true

Liste après les ajouts : ["Formation", "JavaCore", "by JirAWS"]

Résultat de 'isEmpty' : false

Iterator : Interface spécifiquement conçue pour itérer sur les
éléments d’un type Collection<E> (suite d’éléments).

Elle offre une approche d'itération optimisée et sécurisée, avec des
méthodes (méthode) permettant de vérifier la présence d'éléments
suivants, d’accéder à l'élément suivant et de supprimer des éléments
durant l'itération, évitant ainsi les risques liés à l'utilisation
d’une boucle for-each classique.

ListIterator : Une extension de l'interface Iterator qui permet de
parcourir les éléments d’un type List<E> dans les deux sens, de les
modifier durant l'itération et d’obtenir leurs index (position).

Permet notamment d’ajouter des éléments à la volée durant l’itération,
sans craindre une ConcurrentModificationException comme avec une
itération via boucle for-each.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

87

Collection.iterator() : Renvoie un itérateur (Iterator) permettant
une itération optimale sur les éléments de la collection.

Une approche souvent délaissée en faveur d’une boucle for-each pour
les itérations simples ne nécessitant pas davantage de sécurité.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

// Obtention de l'itérateur pour la liste

Iterator<String> iterator = texteList.iterator();

// Parcours de la liste à l'aide de l'itérateur

while (iterator.hasNext()) {

String texte = iterator.next();

System.out.println(texte);

}

// Résultat (affichage) dans la console

"Formation"

"JavaCore"

"by JirAWS"

Comparable<T> : Interface générique (Généricité) déclarant une
unique méthode pour comparer deux instances (objet) d’un même type.

Notamment utilisé par les méthodes de tri sur les types Collection.

public class Personne implements Comparable<Personne> {

private int age;

public Personne(int age) {

this.age = age;

}

@Override

public int compareTo(Personne autre) {

return this.age - autre.age;

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

88

26. Listes (Lists)

List<E> : Interface générique (Généricité) déclarant les méthodes
(méthode) permettant la manipulation de suites (ou “listes”)
d’éléments ordonnés du même type et pouvant contenir des doublons.

C’est le type de Collection<E> le plus couramment utilisé, au travers
de la classe ArrayList<E> qui l’implémente.

public interface List<E> extends SequencedCollection<E> { ... }

ArrayList<E> : Classe générique (Généricité) implémentant
l’interface List<E>, basée sur un tableau (array).

C’est la forme de List<E> la plus standard, pour les usages généraux.

List<String> texteList = new ArrayList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

System.out.println("Liste après les ajouts : " + texteList);

// Résultat (affichage) dans la console

Liste après les ajouts : ["Formation", "JavaCore", "by JirAWS"]

LinkedList<E> : Classe générique (Généricité) très similaire à
ArrayList<E> mais dont les éléments sont doublement liés.

Chaque élément connaît l’élément qui le précède et le succède, ce qui
rend ce type de liste particulièrement efficace pour les modifications
(ajout / suppression / insertion) intensives.

List<String> texteList = new LinkedList<>();

texteList.add("Formation");

texteList.add("JavaCore");

texteList.add("by JirAWS");

System.out.println("Liste après les ajouts : " + texteList);

// Résultat (affichage) dans la console

Liste après les ajouts : ["Formation", "JavaCore", "by JirAWS"]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

89

27. Ensembles (Sets)

Set<E> : Interface générique (Généricité) très similaire à List<E>
mais qui ne permet pas les doublons d’éléments.

C’est l’interface de référence pour représenter des ensembles (Set)
d'éléments distincts, sans ordre particulier.

public interface Set<E> extends Collection<E> { ... }

HashSet<E> : Classe générique (Généricité) implémentant l’interface
Set<E>, basée sur une table de hachage (Hash), permettant ainsi un
accès rapide aux éléments.

La forme d’ensemble (Set) la plus standard, pour les usages généraux.

La table de hachage (Hash) permet à une instance de HashSet de
positionner les éléments contenus en fonction du résultat de leur
hachage et ainsi de les retrouver grâce à cette valeur plutôt qu’en
parcourant la suite d’éléments comme le fait un type List<E>.

Set<String> texteSet = new HashSet<>();

/**

* Rappel important : l’ordre d’ajout des éléments n’est pas assuré dans

* un HashSet, car il positionne les éléments en fonction du

* résultat de leur hachage (Hash) et non de leur ordre d’insertion.

*/

texteSet.add("Formation");

texteSet.add("JavaCore");

texteSet.add("by JirAWS");

System.out.println("Set après les ajouts : " + texteSet);

// Tentative d'ajout d'un doublon

texteSet.add("Formation");

System.out.println("Set après ajout de doublon : " + texteSet);

// Résultat (affichage) dans la console

Set après les ajouts : ["Formation", "by JirAWS", "JavaCore"]

Set après ajout de doublon : ["Formation", "by JirAWS", "JavaCore"]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

90

TreeSet<E> : Classe générique (Généricité) implémentant l’interface
Set<E>, basée sur un arbre rouge-noir, garantissant ainsi que les
éléments soient triés selon leur ordre naturel ou celui d’une
implémentation de Comparable<T>.

Un TreeSet<E> peut être vu comme une ArrayList<E> à la différence
qu’il empêche l’ajout de doublons d’éléments.

La notion d’arbre “rouge-noir” réfère aux arbres binaires: des
structures d’éléments sous la forme d’arbre dont les branches ont
(au mieux) toutes la même taille (les éléments étant les feuilles),
ce qui permet à une machine (binaire) de réaliser des recherches très
efficaces, et également de conserver l’ordre des éléments stockés dans
le cas du TreeSet<E>.

Set<Integer> integerSet = new TreeSet<>();

/**

* Rappel important : l’ordre naturel des éléments est assuré dans

* un TreeSet, contrairement à un HashSet.

*/

integerSet.add(244);

integerSet.add(99);

integerSet.add(150);

integerSet.add(10);

System.out.println("Set après les ajouts : " + integerSet);

// Tentative d'ajout d'un doublon

integerSet.add(150);

System.out.println("Set après ajout de doublon : " + integerSet);

// Résultat (affichage) dans la console

Set après les ajouts : [10, 99, 150, 244]

Set après ajout de doublon : [10, 99, 150, 244]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

91

28. Dictionnaires (Maps)

Map<K, V> : Interface générique (Généricité) déclarant les méthodes
(méthode) permettant la manipulation de suite d’éléments au format
Clé-Valeur (K, V : Key, Value).

Une Map conserve le concept fondamental des suites (List) d’éléments.
Il s'agit d’une suite d’éléments, mais qui sont accessibles grâce à
une clé associée plutôt qu’un index (position).

Les éléments similaires à Map en langage Python sont notamment appelés
“Dictionnaire” : Mot -> Définition.

On peut voir ce guide comme une très grande instance de Map, en raison
de sa structure : Mot-clé Java -> Définition.

public interface Map<K, V> { ... }

HashMap<K, V> : Classe générique (Généricité) implémentant
l’interface Map, basée sur une table de hachage (Hash), permettant
ainsi un accès rapide aux éléments.

C’est la forme de Map la plus standard, pour les usages généraux.

Comme avec la classe HashSet<E>, la classe HashMap<K, V> utilise le
résultat du hachage (Hash) pour positionner les éléments en fonction
de leur clé. Elle n’assure donc pas l’ordre d’insertion des éléments.

Map<String, Integer> langagesCreation = new HashMap<>();

/**

* Rappel important : l’ordre d’ajout des clés n’est pas assuré dans

* une HashMap, car il positionne les éléments en fonction du

* résultat de leur hachage (Hash) et non de leur ordre d’insertion.

*/

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après les ajouts : " + langagesCreation);

// Résultat (affichage) dans la console

Map après les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

92

TreeMap<K, V> : Classe générique (Généricité) implémentant
l’interface Map, basée sur un arbre rouge-noir, garantissant ainsi
que les clés soient triées selon leurs ordres naturels ou celui
d’une implémentation de Comparable<T>.

La classe TreeMap<K, V> repose sur le même système d’arbre
“rouge-noir” que la classe TreeSet<E>. L’explication sur les arbres
binaires se trouve dans la définition de TreeSet<E>.

Map<String, Integer> langagesCreation = new HashMap<>();

/**

* Rappel important : l’ordre naturel des clés est assuré dans

* un TreeMap, contrairement à une HashMap.

*/

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après les ajouts : " + langagesCreation);

// Résultat (affichage) dans la console

Map après les ajouts : {"C" = 1972, "Java" = 1995, "Python" = 1991}

// On remarque que les entrées ont été triées alphabétiquement

Map.put(K key, V value) : Crée une entrée (un élément) dans la Map
avec la clé (key) en lui associant la valeur (value) passée en
argument, ce qui forme une paire clé-valeur.

Si la clé existe déjà, alors sa valeur associée existante est
remplacée par la nouvelle passée en argument.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

System.out.println("Map après l’ajout : " + langagesCreation);

// Résultat (affichage) dans la console

Map après l’ajout : {"Java" = 1995}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

93

Map.get(K key) : Renvoie la valeur associée à la clé passée en
argument si elle existe dans la Map. Renvoie null si la clé
n'existe pas ou qu’elle n'a pas de valeur associée.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après les ajouts : " + langagesCreation);

Integer anneeCreationJava = langagesCreation.get("Java");

System.out.println("Apparition du langage Java : " + anneeCreationJava);

// Résultat (affichage) dans la console

Map après les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}

Apparition du langage Java : 1995

Map.remove(K key) : Supprime la clé passée en argument et sa valeur
associée. La paire (élément) clé-valeur est supprimée.

Renvoie vrai (true) si la suppression est validée, faux (false) sinon.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après les ajouts : " + langagesCreation);

langagesCreation.remove("Java");

System.out.println("Map après 'remove' : " + langagesCreation);

// Résultat (affichage) dans la console

Map après les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}

Map après 'remove' : {"C" = 1972, "Python"= 1991}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

94

Map.keySet() : Renvoie une collection de type Set<E> contenant
toutes les clés présentes dans la Map<K, V> (sans les valeurs).

Les clés d’une Map étant uniques, le type Set<E> est naturellement le
plus approprié grâce à sa garantie d’unicité des éléments.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après ajout : " + langagesCreation);

Set<String> langageSet = langagesCreation.keySet();

System.out.println("Set de clés : " + langageSet);

// Résultat (affichage) dans la console

Map après ajout : {"Java" = 1995, "C" = 1972, "Python" = 1991}

Set de clés : ["Java", "C", "Python"]

Map.values() : Renvoie une Collection<E> contenant toutes les
valeurs présentes dans la Map (sans leurs clés).

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après ajout : " + langagesCreation);

Collection<Integer> anneeListe = langagesCreation.values();

System.out.println("Liste des valeurs : " + anneeListe);

// Résultat (affichage) dans la console

Map après ajout : {"Java" = 1995, "C" = 1972, "Python" = 1991}

Liste des valeurs : [1995, 1972, 1991]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

95

Map.entrySet() : Renvoie une collection de type Set<E> contenant les
paires clé-valeur (Entry<K, V>) de la Map.

Très utile lorsque l’on souhaite itérer avec une boucle for-each sur
l’ensemble des éléments d’une Map, afin de les manipuler.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map après ajout : " + langagesCreation);

// Conversion des entrées (éléments) de la Map en un ensemble (Set)

Set<Entry<String, Integer>> langagesSet = langagesCreation.entrySet();

System.out.println("Set d'Entrées : " + langagesSet);

// Itérations sur les éléments (Entry<X, Y>) de l’ensemble (Set)

for (Entry<String, Integer> langage : langagesSet) {

System.out.println(langage.getKey() + " - " + langage.getValue());

}

// Résultat (affichage) dans la console

Map après ajout : {"Java" = 1995, "C" = 1972, "Python" = 1991}

Set d'Entrées : ["Java" = 1995, "C" = 1972, "Python" = 1991]

// Affichage de la boucle for-each

Java - 1995

C - 1972

Python - 1991

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

96

29. Files d’Attente (Queues)

Queue<E> : Interface générique (Généricité) partageant (avec List<E>
et Set<E>) le concept de manipulation de suites d’éléments, en étant
spécialement adaptée à la création de “files d’attentes” (Queue).

C’est un type de collection assez spécifique, conçu pour le traitement
séquentiel d’éléments. Les éléments ajoutés (offer) en premiers seront
les premiers à être extraits (poll) pour être traités. C’est ce qu’on
appelle la méthode “FIFO”, acronyme de “First In, First Out”.

// La classe LinkedList implémente l’interface Queue

Queue<Integer> fileAttente = new LinkedList<>();

// Ajout d'éléments - Équivalent de Collection.add(E element)

fileAttente.offer(1);

fileAttente.offer(2);

fileAttente.offer(3);

System.out.println("Queue après les ajouts : " + fileAttente);

/**

* Extraction du prochain élément en attente

* Équivalent de Collection.get(0) suivi de Collection.remove(0)

*/

Integer elementExtrait1 = fileAttente.poll(); // 1

System.out.println("Élément extrait : " + elementExtrait1);

System.out.println("Queue après extraction N°1 : " + fileAttente);

// Extraction du prochain élément en attente

Integer elementExtrait2 = fileAttente.poll(); // 2

System.out.println("Élément extrait : " + elementExtrait2);

System.out.println("Queue après extraction N°2 : " + fileAttente);

// Résultat (affichage) dans la console

Queue après les ajouts : [1, 2, 3]

Élément extrait : 1

Queue après extraction N°1 : [2, 3]

Élément extrait : 2

Queue après extraction N°2 : [3]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

97

30. Flux (Streams)

Stream (Flux) : Un flux correspond à un ensemble d’éléments qui vont
pouvoir être manipulés séquentiellement, les uns après les autres,
ou parallèlement (parallélisme) avec un traitement en simultané.

C’est sur cette logique que repose l’interface Stream<E> (API), qui
permet de réaliser des opérations sur les types Collection<E>.

Stream<E> (API) : Interface générique (Généricité) déclarant les
méthodes (méthode) permettant de manipuler les éléments d’un type
collection (List<E>, Set<E>, etc.) avec notamment des opérations de
filtrage, de recherche, de mappage, ou encore de collecte.

C’est une interface incontournable pour les développeurs Java.

public interface Stream<T> extends BaseStream<T, Stream<T>> { ... }

Collection.stream() : Convertit une Collection<E> en Stream<E>
permettant d’accéder aux méthodes (méthode) de cette interface.

On peut voir ça comme une “sorte” de transformation en boucle for-each
permettant de traiter un flux (une suite) d’éléments un par un.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(1);

integerList.add(25);

integerList.add(300);

System.out.println("Liste après les ajouts : " + integerList);

// Transformation de la liste en stream (flux)

Stream<Integer> integerStream = integerList.stream();

System.out.println("Stream : " + integerStream); // [1, 25, 300]

// Résultat (affichage) dans la console

Liste après les ajouts : [1, 25, 300]

Stream : java.util.stream.ReferencePipeline$Head@b4c966a

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

98

Stream.filter(Predicate<T> predicate) : Renvoie un Stream<E> ne
contenant que les éléments respectant le prédicat (condition) passé
en argument.

Cette méthode peut être visualisée comme une boucle for-each qui va
faire une itération sur chaque élément du flux, pour vérifier s'ils
respectent la condition donnée et ne conserve que ceux pour lesquels
cette dernière renvoie vrai (true).

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(1);

integerList.add(25);

integerList.add(300);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. Transformation de la liste en stream (flux)

* 2. Filtrage des éléments pour ne garder que ceux dont la valeur

* est supérieure à 30

*/

Stream<Integer> intStream1 = integerList.stream()

.filter(entier -> entier > 30);

System.out.println("Stream après 1er filtrage : " + intStream1);

/**

* La transformation en stream n’est plus nécessaire, car déjà faite

* 1. Filtrage des éléments pour ne garder que ceux dont la valeur

* est supérieure à 500

*/

Stream<Integer> intStream2 = intStream1.filter(entier -> entier > 500);

System.out.println("Stream après 2ème filtrage : " + intStream2);

// Résultat (affichage) dans la console

Liste après les ajouts : [1, 25, 300]

Stream après 1er filtrage : [25, 300]

Stream après 2ème filtrage : []

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

99

Stream.map(Function<T,R> mapper) : Applique la fonction passée en
argument sur chaque élément du flux et renvoie un Stream<E> des
éléments modifiés.

Cette méthode peut être visualisée comme une boucle for-each qui va
faire une itération sur chaque élément du flux, appliquant l’opération
(fonction) demandée et générant un nouveau flux avec les résultats.

La fonction passée en paramètre ne doit pas forcément être une
opération de modification. Elle peut également être une opération de
lecture (récupération) d’une valeur (comme un attribut), permettant
ainsi de former un nouveau flux (stream) constitué de ces valeurs.

Le nom de la méthode “map” est emprunté au concept de la Programmation
Fonctionnelle, où "mapper" signifie: “appliquer une fonction à chaque
élément d'une collection pour en obtenir une nouvelle transformée”.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(1);

integerList.add(25);

integerList.add(300);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. Transformation de la liste en stream (flux)

* 2. Multiplication par 2 de la valeur de chaque élément du Stream

*/

Stream<Integer> intStream = integerList.stream()

.map(entier -> entier * 2);

System.out.println("Stream après filtrage : " + intStream);

// Résultat (affichage) dans la console

Liste après les ajouts : [1, 25, 300]

Stream après filtrage : [2, 50, 600]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

100

Stream.forEach(Function<T,R> mapper) : Permet d’effectuer une
itération via une boucle for-each sur les éléments du Stream<E>.

Attention: Cette méthode ne renvoie rien (void), c’est-à-dire qu’elle
ne renvoie pas de Stream<E> utilisable comme ce que font les autres
méthodes vues dans ce guide.

Cette méthode est totalement comparable à l’implémentation d’une
boucle for-each: elle itère sur chaque élément présent dans le Stream,
et applique le bloc de code fourni en paramètre.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(1);

integerList.add(25);

integerList.add(300);

System.out.println("Liste après les ajouts : " + integerList);

// 1. Transformation de la liste en stream (flux)

Stream<Integer> intStream = integerList.stream();

// 2. Itération sur chaque élément grâce à une boucle forEach

intStream.forEach(entier -> {

System.out.println("Affichage de l’élément : " + entier);

});

System.out.println("Stream après les opérations : " + intStream);

// Résultat (affichage) dans la console

Liste après les ajouts : [1, 25, 300]

Affichage de l'élément : 1

Affichage de l’élément : 25

Affichage de l’élément : 300

Stream après les opérations : [1, 25, 300]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

101

Stream.sorted() : Trie les éléments du Stream<E> en fonction de leur
ordre naturel, ou de celui donné par un comparateur (Comparator<T>).

Il existe également la méthode surchargée (Overload) permettant de
fournir un comparateur externe afin d’appliquer une logique de tri
bien spécifique : Stream.sorted(Comparator<T> comparator).

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments dans un ordre non naturel (non croissant)

integerList.add(200);

integerList.add(25);

integerList.add(36);

integerList.add(44);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. Transformation de la liste en stream (flux)

* 2. Tri des éléments du stream en fonction de leur ordre naturel

*/

Stream<Integer> intStream = integerList.stream()

.sorted();

System.out.println("Stream après le tri : " + intStream);

// Résultat (affichage) dans la console

Liste après les ajouts : [200, 25, 36, 44]

Stream après le tri : [25, 36, 44, 200]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

102

Stream.toList() : Renvoie une collection de type List<E> à partir
des éléments contenus dans le Stream<E>.

Particulièrement utile en sortie des opérations effectuées avec les
méthodes (méthode) de Stream<E> pour réutiliser un type d’objet plus
généraliste et compatible avec, par exemple, les bases de données.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(200);

integerList.add(25);

integerList.add(36);

integerList.add(44);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. Transformation de la liste en stream (flux)

* 2. Transformation du stream en liste

*/

List<Integer> liste = integerList.stream()

.toList();

System.out.println("Liste générée à partir du stream : " + liste);

// Résultat (affichage) dans la console

Liste après les ajouts : [200, 25, 36, 44]

Liste générée à partir du stream : [200, 25, 36, 44]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

103

Stream.distinct() : Renvoie une copie du Stream<E> ne contenant que
des éléments uniques (distincts), après avoir supprimé les doublons.

On peut voir ça comme la conversion d’un type List<E> (acceptant les
doublons) en Set<E> (garantissant l’unicité des éléments).

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(200);

integerList.add(25);

integerList.add(200);

integerList.add(44);

integerList.add(200);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. Transformation de la liste en stream (flux)

* 2. Exclusion des éléments répétitifs

*/

Stream<Integer> integerStream = integerList.stream()

.distinct();

System.out.println("Stream après 'distinct' : " + integerStream);

// Résultat (affichage) dans la console

Liste après les ajouts : [200, 25, 200, 44, 200]

Stream après 'distinct' : [200, 25, 44]

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

104

Gestion des Exceptions ⚠️
[Exception Handling]

31. Objets Jetables (Throwables)

Throwable : Classe mère de toutes les erreurs possibles en Java.

Elle possède deux sous-classes principales : Exception et Error.

Le mot “Throwable”, qui se traduit en français par “Jetable”, prend
tout son sens dans la gestion des erreurs dans ce langage, avec
notamment l’usage des mots-clés throw, throws ou encore catch,
directement basés sur le verbe “jeter” et “attraper” en anglais.

Elle offre les méthodes (méthode) de base pour traiter les erreurs en
Java, comme par exemple la méthode “printStackTrace()” qui affiche un
résumé complet (StackTrace) de l’erreur survenue.

public class Throwable implements Serializable { ... }

StackTrace : Résumé d’une erreur (Throwable) survenue durant
l’exécution d’un programme. Elle contient notamment le nom du type
de l’erreur, un bref message d’explication et les lignes de code
exécutées, ayant entraîné l'erreur.

Un élément essentiel pour les développeurs, qui joue un rôle crucial
durant une phase de débogage. Apprendre à les lire et à les comprendre
n’est pas une option pour devenir un développeur aguerri.

/**

* Exemple de StackTrace lors d’une tentative de division par 0

* Important : Le sens de lecture d’une StackTrace est de bas en haut

* Type de l’erreur : Exception

* Nom de l’erreur : ArithmeticException

* Message de l’erreur : "/ by zero" ("Division par zero")

* Nom du fichier concerné : Main.java

* Ligne qui a déclenché l’erreur : at Main.methode3(Main.java:33)

*/

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Main.methode3(Main.java:33)

at Main.methode2(Main.java:28)

at Main.methode1(Main.java:13)

at Main.main(Main.java:9)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

105

try : Mot-clé permettant d’exécuter un bloc de code en demandant à
Java de se “préparer” à une potentielle erreur (Throwable).

C’est un mécanisme à utiliser dans toutes les situations présentant un
(ou plusieurs) risque potentiel, comme par exemple :

● Une tentative de connexion à une base de données, qui pourrait
être indisponible, en raison de problématiques techniques.

● Une tentative d’ouverture (lecture) d’un fichier, nécessitant
que ce dernier soit bien présent à l’emplacement (Path) indiqué
dans le programme, et que les permissions système autorisent le
programme à manipuler le fichier concerné.

Ce mot-clé se combine avec l’autre mot-clé catch, permettant de
traiter l’erreur potentielle qui pourrait survenir.

/**

* Code fictif et incomplet, pour mettre en lumière le mot-clé try

* La suite du guide contient les définitions des autres mots-clés

* relatifs aux erreurs, ainsi que des exemples de code plus complets.

*/

try {

// Tentative de division par 0 (qui échoue systématiquement)

int resultat = 10 / 0;

System.out.println("Résultat de la division : " + resultat);

} catch(Exception e) {

System.out.println("Une erreur est survenue durant la division.");

e.printStackTrace();

}

/**

* Le code présenté ci-dessus n’affiche rien, car le programme

* est interrompu à la ligne générant une erreur.

* L’instruction System.out.println est donc ignorée.

*/

/**

* Cependant, une erreur (Throwable) sera belle et bien déclenchée

* et le langage Java affichera une StackTrace dans la console.

*/

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

106

catch : Bloc de code associé à un bloc try capturant l’erreur
(Throwable) survenue dans ce dernier, permettant ainsi de la gérer.

Le bloc catch contient en paramètre l’erreur survenue, représentée
sous la forme d’un objet, qui est alors utilisable programmatiquement.

Attention : il est important de retenir que l’exécution de ce bloc est
optionnel, car son exécution dépend du déclenchement d’une erreur dans
le bloc try. Il est donc judicieux de ne placer à l’intérieur que le
code relatif à un scénario d’erreur dans votre programme :

● Gestion de l’erreur : une erreur n’est pas juste une
information, c’est une perturbation du programme qui aurait pu
interrompre l’exécution de ce dernier. Il faut donc faire une
implémentation cohérente en lien avec les scénarios d’erreurs.

● Application du contexte : dans une application beaucoup plus
poussée que les exemples de ce guide, le bloc catch peut
permettre d’effectuer des opérations en réaction aux erreurs,
comme par exemple avec l’envoi de notifications pour prévenir
l’équipe de production qu’une erreur a été rencontrée.

int resultat;

try {

/**

* Tentative de division par 0 qui échoue systématiquement

* (dans cet exemple explicite) et qui va donc stopper

* l’exécution du programme et passer dans le bloc catch

* avec l’erreur en paramètre (qui est ici une Exception)

*/

resultat = 10 / 0;

System.out.println("Résultat de la division : " + resultat);

} catch(Exception e) {

System.out.println("Une erreur est survenue durant la division.");

e.printStackTrace();

}

// Résultat (affichage) dans la console

Une erreur est survenue durant la division.

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Main.methode1(Main.java:14)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

107

finally : Bloc de code s'exécutant après un bloc try et ses blocs
catch associés, indépendamment du fait que ces derniers aient été
exécutés ou non.

On écrit à l’intérieur de ce bloc tout le code qu’on aurait souhaité
exécuter quoi qu’il advienne dans les blocs try et catch, qu’une
erreur (Throwable) soit déclenchée ou pas.

Bien que l’ajout de try-with-resources (avec Java 7) soit venu réduire
les cas d’utilisations du bloc finally, il existe des cas où son usage
s’avère très pratique. Un très bon exemple est celui d’un outil de
chronométrage : il est démarré au début du bloc try pour chronométrer
des étapes potentiellement lentes, et sera stoppé dans le bloc finally
pour qu’il ne dépende pas de l’exécution potentielle d’un bloc catch.

int resultat = 0;

try {

System.out.println("Démarrage de la division...");

// Tentative de division par 0 (qui échoue systématiquement)

resultat = 10 / 0;

System.out.println("Ligne qui s’affiche si tout va bien.");

} catch(Exception e) {

System.out.println("Une erreur est survenue durant la division.");

e.printStackTrace();

} finally {

System.out.println("Fin de la division.");

}

System.out.println("Résultat final : " + resultat);

// Résultat (affichage) dans la console

Démarrage de la division...

Une erreur est survenue durant la division.

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Main.methode5(Main.java:14)

Fin de la division.

Résultat final : 0

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

108

try-with-resources : Une autre forme de try, ayant le même objectif
que ce dernier, mais prenant en paramètre des ressources de type
AutoCloseable qui seront “automatiquement fermées”.

C’est une optimisation de code permettant d’assurer la fermeture de
ressources nécessitant une ouverture, et gourmandes en mémoire,
évitant ainsi aux développeurs d’avoir à le faire eux-mêmes.

Le try-with-resources a été ajouté en Java 7, pour :

● Faciliter l’écriture du code : vous trouverez ci-dessous deux
exemples de code, avec et sans l’usage de try-with-resources,
témoignant avec évidence de l’intérêt de ce dernier.

● Optimiser le code : de nombreux problèmes de mémoire peuvent
être évités grâce à l’usage de try-with-resources. Il suffit
d’un matin à moitié réveillé pour qu’un développeur commette un
simple oubli qui pourrait se transformer en une fuite de
mémoire, entraînant une surconsommation de la machine hôte.

/**

* Première approche - AVEC try-with-resources (Version optimisée)

*/

public void lireFichier(String path) {

/**

* Ouverture du flux de lecture (BufferedReader) du fichier dans

* la variable "br" qui est alors utilisable dans le bloc try

* mais pas ailleurs, à cause du mécanisme de Portée de Variable.

*

* La variable "br" qui est un type Closeable sera automatiquement

* fermée après l’exécution des blocs try et catch.

*/

try (BufferedReader br = new BufferedReader(new FileReader(path))) {

String ligne;

while ((ligne = br.readLine()) != null) {

System.out.println(ligne);

}

} catch (IOException e) {

e.printStackTrace();

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

109

/**

* Seconde approche - SANS try-with-resources (Version non-optimisée)

*/

public void lireFichier(String path) {

/**

* Déclaration de la variable (pour le flux de lecture) en dehors

* des blocs try / catch afin de respecter le mécanisme de

* la Portée de Variable (et ainsi l’utiliser dans le finally).

*/

BufferedReader br = null;

try {

// Ouverture manuelle du flux de lecture (BufferedReader)

br = new BufferedReader(new FileReader(path));

String ligne;

while ((ligne = br.readLine()) != null) {

System.out.println(ligne);

}

} catch (IOException e) {

e.printStackTrace();

} finally {

/**

* Fermeture manuelle du flux de lecture (BufferedReader)

* dans le bloc finally, pour s’assurer de son exécution

* et ainsi éviter les surconsommations de mémoire.

*/

if (br != null) {

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

110

throw : Instruction permettant de propager une erreur (Throwable)
qui devra être traitée ailleurs dans le programme.

C’est l’instruction utilisée par tous les programmes qui déclenchent
des erreurs (Throwable), contraignant les développeurs à faire usage
des blocs try et catch pour les traiter.

Cette instruction est particulièrement utile lorsqu’on souhaite
déclencher des erreurs spécifiques à nos programmes, en ayant fait au
préalable une implémentation customisée de la classe Exception.

public void affichageDivision(int dividende, int diviseur) {

/**

* (Exemple de code totalement fictif)

*

* Pour éviter que la division ne puisse générer une erreur,

* on prévient cette dernière avec une condition vérifiant les

* cas limitants de l’opération (ici, une division).

*

* CustomArithmeticException a été inventée pour cet exemple.

*/

if(dividende == 0 || diviseur == 0) {

throw new CustomArithmeticException("Division par zéro !");

}

else {

System.out.println("Résultat : " + (dividende / diviseur));

}

}

throws : Mot-clé se plaçant dans la déclaration d’une méthode, et
indiquant que cette dernière peut propager le ou les type(s)
d’erreurs (Throwable) mentionnés.

Le programme appelant cette méthode sera alors contraint de faire
usage des blocs try et catch pour traiter les erreurs, ou alors
d’utiliser lui-même le mot-clé throws dans sa déclaration.

public void affichageDivision(int a, int b) throws ArithmeticException {

System.out.println("Résultat : " + (a / b));

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

111

32. Exceptions (Exceptions)

Exception : Première classe fille de la classe Throwable, permettant
de représenter les erreurs d’un programme exécuté par la JVM.

On précise ici la notion d’exécution “par la JVM”, car c’est toute la
différence entre les deux classes filles de la classe Throwable : une
Exception est liée à l’exécution interne d’un programme, quand une
Error concerne les problématiques liées à l’environnement extérieur de
la JVM ou à ses défaillances techniques en interne.

La tentative de division par zéro est un exemple typique d’Exception :
elle résulte d’une ArithmeticException, qui est due à la logique d’un
programme qui ne prévient pas cette erreur (avec une condition par
exemple) et donc qui est due au programme en lui-même.

public class Exception extends Throwable { … }

RuntimeException : Classe de base pour les erreurs (Exception) de
toutes sortes lancées durant l’exécution normale d’un programme.

Une tentative de manipulation d’une variable référence qui n’a pas été
initialisée (null), lèvera une Exception nommée NullPointerException,
une sous-classe de RuntimeException.

public class RuntimeException extends Exception { … }

NullPointerException : Exception lancée lorsque l’on essaie de
manipuler ou d’accéder à un membre d’une variable référence qui n’a
pas encore été initialisée (null).

Une erreur très basique, mais qui a le mérite d’être très facilement
retrouvable (débogage) dans le code avec l’aide d’une StackTrace.

public class NullPointerException extends RuntimeException { … }

ArithmeticException : Exception lancée lors d’erreurs arithmétiques
comme la division par zéro.

public class ArithmeticException extends RuntimeException { … }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

112

ClassCastException : Exception lancée lorsqu’une tentative de
conversion (Casting) échoue.

Une tentative de conversion d’un élément de type List<E> en Map<K, V>
déclenchera une ClassCastException car le type source (List<E>) n’a
aucun lien d’héritage avec le type cible (Map<K, V>).

public class ClassCastException extends RuntimeException { … }

IndexOutOfBoundsException : Classe de base pour les erreurs
(Exception) qui concerne les tentatives d’accès à des indices
(index) invalides.

Traduit par “Index en dehors des bornes” (ou limites), bornes qui sont
établies par un début (index le plus petit) et une fin (index le plus
grand) d’une suite d'éléments (collection ou tableau).

public class IndexOutOfBoundsException extends RuntimeException { … }

ArrayIndexOutOfBoundsException : Exception lancée lorsqu’un
programme tente d’accéder à un élément d'un tableau avec un indice
(index) invalide.

Une tentative d’accès à l’élément en cinquième position (indice 4)
d’un tableau n’en contenant que 3 (indice min = 0 / max = 2),
déclenchera une ArrayIndexOutOfBoundsException.

public class ArrayIndexOutOfBoundsException extends

IndexOutOfBoundsException { … }

ConcurrentModificationException : Exception lancée lorsqu’une suite
d’éléments est modifiée alors qu’elle est en cours d’itération.

Une boucle for-each qui ajouterait ou supprimerait un élément d’une
Collection<E> durant son itération sur cette dernière, entraînerait
une ConcurrentModificationException car les éléments “chargés” (load)
ne seraient plus les mêmes qu’au départ de la boucle.

public class ConcurrentModificationException extends RuntimeException

{ … }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

113

IOException : Classe de base pour les erreurs (Exception) liées aux
Entrées / Sorties (IO : Input / Output).

Une tentative d’ouverture de fichier dans un programme n’étant pas
autorisé (permission système) à le faire, déclenchera une IOException.

public class IOException extends Exception { … }

FileNotFoundException : Exception lancée lorsqu’on essaie d’accéder
à un fichier (File) qui n’existe pas sur le système.

Le problème peut également venir d’une étourderie durant l’écriture du
chemin d’accès (Path) par le développeur.

public class FileNotFoundException extends IOException { … }

ClassNotFoundException : Exception lancée lorsqu’on essaie de
charger une classe qui n’existe pas.

Dans certains cas, cette erreur peut survenir à cause d’une mauvaise
configuration du projet ou lorsqu’une bibliothèque importée contient
une classe du même nom que celle dans le projet.

public class ClassNotFoundException extends ReflectiveOperationException

{ … }

SQLException : Classe de base pour les erreurs (Exception) liées aux
bases de données SQL (Structured Query Language).

Une requête mal formulée envoyée par votre programme à une base de
données déclenchera une SQLException.

public class SQLException extends Exception

implements Iterable<Throwable> { … }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

114

33. Erreurs Système (System Errors)

Error : Seconde classe fille de la classe Throwable, permettant de
représenter les erreurs externes à la JVM, ou les erreurs graves
causées par un dysfonctionnement de cette dernière.

La JVM étant installée sur une machine hôte (ordinateur ou serveur),
elle partage les ressources (processeur, mémoire vive et stockage) de
cette dernière avec les autres processus fonctionnant dessus.

Ce qu’il faut retenir, c’est que le bon fonctionnement de la JVM
exécutant vos programmes en Java dépend fortement de l’environnement
dans lequel elle est installée. Il existe beaucoup de facteurs dans un
système informatique qui peuvent générer une erreur dans un programme.
Bien qu'il soit fondamental d'anticiper ces aléas, la capacité de
l'application à gérer directement de telles erreurs est souvent
limitée, voire impossible, car ce type d’erreur est au-delà de sa
portée d’action. C’est cette nette distinction entre les erreurs
internes et externes à un programme qui a entraîné la création des
deux sous-classes principales (Exception et Error) de la classe
générale Throwable.

public class Error extends Throwable { … }

OutOfMemoryError : Erreur qui se produit lorsque la JVM (Java
Virtual Machine) ne dispose pas d’une quantité suffisante de mémoire
vive pour faire fonctionner un programme.

Il faut veiller à ce que ce manque de mémoire vive ne soit pas dû à
son propre programme, potentiellement trop gourmand.

public class OutOfMemoryError extends VirtualMachineError { … }

StackOverflowError : Erreur qui se produit lorsqu’une récursivité
excessive (et souvent sans fin) est exécutée.

Une fonction récursive mal implémentée (sans condition d’arrêt)
résulte très souvent d’une StackOverflowError.

public class StackOverflowError extends VirtualMachineError { … }

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

115

34. Ressources Gérables (Manageable Resources)

AutoCloseable : Interface déclarant une unique méthode dont la
redéfinition (Override) devra être destinée à la libération des
ressources utilisées par une instance.

Pour accéder (lecture) aux données, ou modifier (écriture) les données
d’un fichier dans un programme, il faudra “ouvrir” un flux numérique
vers ce dernier, permettant donc de faire transiter les données (en
lecture, ou en écriture). Ce flux, qui consomme de la mémoire vive,
nécessitera d’être fermé après exécution, pour libérer les ressources
utilisées par cette “connexion” au fichier.

Un exemple d’application réelle est la classe BufferedWriter: elle
ouvre un flux d’écriture vers un fichier cible, et nécessite donc
d’être fermée afin de libérer l’espace mémoire.
Lors de la fermeture (close) d’une instance de cette classe:

● Elle s’assure que toutes les données en attente (Buffer)
d’écriture soient bien écrites dans le fichier, ou supprimées.

● Elle libère les ressources relatives au flux de connexion vers
le fichier, avec par exemple l’identificateur de fichier.

● Elle marque l’objet comme fermé, pour qu’il déclenche (throw)
une IOException si on tente de l’utiliser à nouveau.

public interface AutoCloseable {

void close() throws Exception;

}

Closeable : Interface fille de AutoCloseable, spécifique aux flux
d’entrée / sortie, déclarant l’utilisation spécifique du type
IOException plutôt qu’une simple Exception générale.

On l’utilise implicitement au travers de certaines classes comme
BufferedReader dans un try-with-resources.

public interface Closeable extends AutoCloseable {

void close() throws IOException;

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

116

Entrée / Sortie 🔁
[Input / Output]

35. Scanner (Scanner)

Scanner : Classe permettant de lire les données de différents types
d’entrées comme l'entrée standard (Console IDE), un fichier (File)
ou une simple chaîne de caractères (String).

Scanner scanner = new Scanner(System.in);

System.out.print("Entrez votre nom : ");

String nom = scanner.nextLine(); // L'utilisateur écrit "JirAWS"

System.out.println("Bonjour, " + nom);

System.out.print("Entrez votre âge : ");

int age = scanner.nextInt(); // L'utilisateur écrit "30"

System.out.println("Vous avez " + age + " ans.");

System.out.print("Entrez votre année de naissance : ");

// Erreur volontaire : une chaîne non-convertible en nombre est entrée

int annee = scanner.nextInt(); // L'utilisateur écrit "AZERTY"

// Lignes ci-dessous ignorées à cause de l’Exception levée ci-dessus

System.out.println("Vous êtes né en " + annee);

scanner.close(); // Fuite de mémoire ! Ressource non fermée.

// Résultat (affichage) dans la console

Entrez votre nom : "JirAWS"

Bonjour, JirAWS

Entrez votre âge : "30"

Vous avez 30 ans.

Entrez votre année de naissance : "AZERTY"

Exception in thread "main" java.util.InputMismatchException

at java.base/java.util.Scanner.throwFor(Scanner.java:947)

at java.base/java.util.Scanner.next(Scanner.java:1602)

at java.base/java.util.Scanner.nextInt(Scanner.java:2267)

at java.base/java.util.Scanner.nextInt(Scanner.java:2221)

at Main.main(Main.java:18)

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

117

36. Fichiers (Files)

File : Classe permettant de représenter sous la forme d’objet un
fichier ou un dossier (répertoire) dans le système de la machine
(ordinateur ou serveur) exécutant le programme.

Cette classe permet de manipuler des fichiers dans un programme, et
notamment de lire et/ou écrire des données dans ces derniers à l’aide
des classes FileReader et FileWriter.

/**

* On admet ici qu’un fichier javacore_masterguide.txt se trouve bien

* dans le dossier jiraws, lui–même dans le dossier home du système.

*/

File javaCoreGuide = new File("/home/jiraws/javacore_masterguide.txt");

Path : Classe permettant de représenter un chemin (path) vers une
ressource dans le système (fichier ou dossier).

Bien que les chemins puissent être directement représentés avec du
simple texte (String), la classe Path offre une approche beaucoup plus
sécurisée, plus robuste et plus adaptée aux opérations sur les
systèmes de fichiers. Elle offre notamment des méthodes (méthode) de
recherche et de filtrage qui sont primordiales pour une application.

Path chemin = Paths.get("/home/jiraws/javacore_masterguide.txt");

System.out.println("Chemin d'accès : " + chemin);

/**

* Une fois l’instance de Path créée, on peut directement accéder

* au fichier vers lequel cette dernière pointe dans le système.

*/

File javaCoreGuide = chemin.toFile();

// Résultat (affichage) dans la console

Chemin d'accès : "/home/jiraws/javacore_masterguide.txt"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

118

FileReader : Classe permettant de lire le contenu textuel d’un
fichier (File), caractère (char) par caractère.

Offre un accès très simple à la lecture du contenu d’un fichier,
mais consomme beaucoup de ressources à cause de la répétition
d’opérations internes. Un FileReader va lire les caractères du
contenu un par un, ce qui implique une forte répétition des
opérations qui peuvent être optimisées avec un BufferedReader.

Malgré son manque d’optimisation, cette classe reste pertinente pour
les besoins de lecture non fréquents. Si une application nécessite
la lecture d’un fichier occasionnellement, l’impact sur les
performances sera négligeable en comparaison d’une application ayant
des besoins fréquents (plusieurs dizaines de fois par minute).

String path = "/home/jiraws/javacore_masterguide.txt";

/**

* Utilisation d’un try-with-resources pour fermer automatiquement

* le FileReader (reader) qui est de type Closeable.

*/

try (FileReader reader = new FileReader(path)) {

int i;

/**

* Tant qu’il y a un caractère à lire dans le fichier, on exécute

* la méthode .read() qui lira le prochain caractère

*

* Si le fichier contient une unique ligne "Bonjour", cette dernière

* sera lue séquentiellement : 'B' 'o' 'n' 'j' 'o' 'u' 'r'

*/

while ((i = reader.read()) != -1) {

System.out.print((char) i);

}

} catch (IOException e) {

e.printStackTrace();

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

119

BufferedReader : Classe permettant de faciliter la lecture du
contenu textuel d’un fichier (File), ligne par ligne, à partir d'un
flux d'entrée comme un FileReader.

Le mise en tampon (Buffering), appliquée à la lecture de fichier,
réduit le nombre d'opérations d'entrée/sortie en lisant les
caractères par paquets plutôt qu'individuellement.
Cette approche limite grandement les interactions avec le système de
stockage (Disque Dur / SSD).

String path = "/home/jiraws/javacore_masterguide.txt";

/**

* Utilisation d’un try-with-resources pour fermer automatiquement

* le BufferedReader (br) et le FileReader qui sont de type Closeable.

/

try (BufferedReader br = new BufferedReader(new FileReader(path))) {

int compteurLigne = 0;

String ligne;

/**

* Tant qu’il y a une ligne à lire dans le fichier, on exécute

* la méthode .readLine() qui lira la prochaine ligne

*

* Pour cet exemple, on admettra que le fichier lu contienne les

* lignes suivantes : "Bonjour", "Bonne lecture !" et "Au revoir"

*/

while ((ligne = br.readLine()) != null) {

compteurLigne++;

System.out.println("Ligne N°" + compteurLigne + " : " + ligne);

}

} catch (IOException e) {

e.printStackTrace();

}

// Résultat (affichage) dans la console

Ligne N°1 : "Bonjour"

Ligne N°2 : "Bonne lecture !"

Ligne N°3 : "Au revoir"

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

120

FileWriter : Classe permettant d’écrire du texte, caractère (char)
par caractère, dans un fichier (File).

Offre un accès très simple à l’écriture de contenu dans un fichier,
mais partage les mêmes enjeux de performances que FileReader.

String path = "/home/jiraws/javacore_masterguide.txt";

/**

* Utilisation d’un try-with-resources pour fermer automatiquement

* le FileWriter (fileWriter) qui est de type Closeable.

/

try (FileWriter fileWriter = new FileWriter(path)) {

// Instruction écrivant directement dans le fichier

fileWriter.write("Hello JirAWS!");

} catch (IOException e) {

e.printStackTrace();

}

BufferedWriter : Classe permettant de faciliter l’écriture de
contenu textuel d’un fichier (File), ligne par ligne, à partir d'un
flux de sortie comme un FileWriter.

Utilise le même principe de mise en tampon (Buffering) que le
BufferedReader, permettant ainsi de limiter le nombre d’interactions
avec le système de stockage (Disque Dur / SSD).

String path = "/home/jiraws/javacore_masterguide.txt";

/**

* Utilisation d’un try-with-resources pour fermer automatiquement

* le BufferedWriter (bw) et le FileWriter qui sont de type Closeable.

/

try (BufferedWriter bw = new BufferedWriter(new FileWriter(path))) {

bw.write("Welcome to JavaCore!");

bw.newLine(); // Ajoute une nouvelle ligne

bw.write("Goodbye, JirAWS!");

} catch (IOException e) {

e.printStackTrace();

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

121

Avancé 🚀
[Advanced]

37. Programmation Fonctionnelle (Functional Programming)

Lambda Function (Fonction Lambda) : Mécanisme permettant de créer et
d’utiliser une fonction dite “anonyme”, c'est-à-dire une fonction
définie “à la volée” n’ayant pas été déclarée (déclaration)
explicitement au préalable dans le code.

Les fonctions Lambda perturbent souvent les développeurs débutants,
notamment à cause du terme “anonyme”. Les fonctions Lambda ne sont
pourtant que des fonctions comme les autres, partageant le même but
final qui est d’exécuter du code.

On les utilise souvent sans savoir qu’elles portent ce nom, comme par
exemple avec l’interface Stream<E>.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(200);

integerList.add(25);

integerList.add(36);

System.out.println("Liste après les ajouts : " + integerList);

/**

* 1. (stream) Transformation de la liste en stream (flux)

* 2. (forEach) Utilisation d’une expression Lambda pour itérer sur

* chaque élément du stream. Le bloc de code entre les

parenthèses est une fonction lambda possédant un

unique paramètre nommé ici "entier"

*/

integerList.stream()

.forEach(entier -> {

System.out.println("Entier actuel : " + entier);

});

// Résultat (affichage) dans la console

Liste après les ajouts : [200, 25, 36]

Entier actuel : 200

Entier actuel : 25

Entier actuel : 36

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

122

38. Fils d’Exécution (Threads)

Runnable : Interface déclarant une unique méthode “run()” dont
l’implémentation sera exécutée par un thread (Thread).

C’est l’élément clé de l’exécution en parallèle (parallélisme) en
programmation Java. Un thread ne pourra lancer une exécution parallèle
d’une classe que si cette dernière implémente (implements) Runnable.

Le langage Java n’autorisant pas l’héritage de plusieurs classes
(également appelé “héritage multiple”), cette interface pourra être
implémentée par les classes ayant déjà hérité, et ne pouvant donc pas
hériter de la classe Thread.

@FunctionalInterface

public interface Runnable {

// Unique méthode déclarée par l’interface Runnable.

void run();

}

public class MaTache implements Runnable {

// Redéfinition de la méthode run() déclarée dans Runnable

@Override

public void run() {

System.out.println("Code exécuté dans un thread séparé.");

}

public static void main(String[] args) {

// Instanciation d'un Thread pour exécuter notre Classe Runnable

Thread thread = new Thread(new MaTache());

// Démarre l'exécution du thread et appel la méthode "run()"

thread.start();

}

}

// Résultat (affichage) dans la console

Code exécuté dans un thread séparé.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

123

Thread : Classe permettant de gérer les exécutions en parallèle
(parallélisme), aussi appelées “multi-tâches” ou “multi-thread”.

Un thread en Java ne peut exécuter que le code d’une classe ayant
implémenté (implements) l’interface Runnable.

La classe Thread implémentant elle-même l’interface Runnable, une
classe héritant de Thread devra redéfinir la méthode Runnable.run().

Chaque Thread créé peut exécuter un programme spécifique, permettant
ainsi d’accélérer certains traitements (recherches, sauvegarde, etc.).

Plus la machine exécutant le programme est puissante, plus vous
pourrez créer de threads sans concession de performance.

/**

* La Classe Thread implémente l’interface Runnable.

* Les classes héritant de Thread devront redéfinir “Runnable.run()”.

*/

public class Thread implements Runnable { … }

public class MaTache extends Thread {

// Redéfinition de la méthode run() déclarée dans Runnable

@Override

public void run() {

System.out.println("Code exécuté dans un thread séparé.");

}

public static void main(String[] args) {

// Instanciation d'un Thread pour exécuter notre Classe Runnable

Thread thread = new Thread(new MaTache());

// Démarre l'exécution du thread et appel de la méthode "run()"

thread.start();

}

}

// Résultat (affichage) dans la console

Code exécuté dans un thread séparé.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

124

volatile : Modificateur garantissant que les changements effectués
sur la valeur d’une variable soient bien visibles (et considérés)
par les différents threads (Thread) en cours d’exécution.

Dans un contexte multi-threads (avec plusieurs threads), chaque thread
possède un petit emplacement mémoire dédié lui permettant de manipuler
ses données et ainsi d’assurer son bon fonctionnement. Si un thread
modifie la valeur d’une variable dans son espace mémoire dédié, les
autres threads n’auront pas accès “immédiatement” à cette nouvelle
valeur car il faudra attendre que la mise à jour ait bien été propagée
dans chacun d’entre eux. Le risque est donc qu’un thread qui n’a pas
encore été mis à jour utilise l’ancienne version de cette valeur, ce
qui a de fortes chances de générer une erreur.

Le modificateur “volatile” est donc là pour garantir que la valeur de
la variable soit stockée dans un emplacement mémoire général (partagé
par tous les threads), assurant ainsi qu’ils accèdent tous à la même
valeur, immédiatement et donc sans problème de synchronisation.

volatile boolean executionEnCours = true;

Pour comprendre l’intérêt du modificateur “volatile”, on peut essayer
d’utiliser une analogie dans le réel :

● Cas sans l’utilisation de “volatile” : Vous travaillez sur un
projet avec une équipe de 10 développeurs (10 threads). Votre
manager, le directeur technique, vient vous transmettre une
directive importante qu’il ne communiquera pas à vos collègues à
cause de sa charge de travail importante. Vous êtes alors le
seul détenteur de la dernière valeur de cette information, que
les autres développeurs (threads) ne pourront donc pas
considérer, ce qui entraînera inévitablement un problème de
synchronisation entre les différents membres de l’équipe.

● Cas avec l’utilisation de “volatile” : Vous travaillez sur un
projet avec une équipe de 10 développeurs (10 threads). Votre
manager, le directeur technique, vient transmettre une
information (variable) importante en faisant une annonce
générale aux 10 développeurs de l’équipe. Tous les développeurs
sont alors détenteurs de la dernière valeur de cette
information, empêchant ainsi les problèmes de synchronisation
entre les différents membres de l’équipe.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

125

synchronized : Modificateur garantissant qu'une méthode ou qu’un
bloc de code ne puisse être exécuté que par un seul thread (Thread)
à la fois, parmi tous ceux en cours d’exécution.

Il permet donc d’empêcher les exécutions simultanées, aussi appelées
“exécutions concurrentes”, évitant ainsi toutes les problématiques
liées à la synchronisation.

Son utilisation est particulièrement pertinente pour éviter qu’un
morceau de code (bloc de code, ou méthode entière) modifiant des
informations importantes ne puisse être exécuté par plusieurs threads
en même temps, ce qui entraînerait tôt ou tard des conflits.

En interne, un morceau de code (bloc de code, ou méthode entière)
indiqué comme “synchronized” possède un unique verrou de sécurité qui
ne pourra être accaparé que par un unique thread. Il pourra alors
exécuter le code avec l’assurance d’être le seul à y avoir accès, tant
qu’il aura ce verrou en sa possession. Une fois son travail terminé,
le thread libérera le verrou qui sera alors disponible pour le
prochain thread qui attendait de pouvoir exécuter ce code. Il faut
donc en comprendre les avantages (sécurité), mais également les
potentiels inconvénients (performances): le modificateur
“synchronized” et son système d’exécution exclusif peuvent créer une
“liste d’attente” de threads attendant pour leur tour.

public synchronized void methodeSynchronisee() {

// Méthode protégée contre les exécutions concurrentes

synchronized(this) {

// Bloc de code protégé contre les exécutions concurrentes

}

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

126

39. Annotations (Annotations)

Annotation : Mécanisme utilisant le symbole @ et permettant
d'associer une ou plusieurs métadonnées à des éléments de code
(classe, méthode, variable, etc.) dans le but d'informer le
compilateur ou d'influencer le comportement de l'application.

L’utilisation d’annotations peut aller du simple marqueur, permettant
de détecter les éléments dans un programme, jusqu’à l’implémentation
d’une réelle logique programmatique avec des annotations possédant un
ou plusieurs paramètre(s) et exécutant du code.

L’annotation @Override (redéfinition de méthode) informe le
compilateur que l’implémentation de la méthode annotée remplace celle
transmise au travers de l’héritage. Si une méthode est annotée avec
@Override alors qu’elle n’existe pas dans une classe mère ou dans une
interface, une erreur de compilation sera explicitement indiquée au
développeur. Il pourra alors chercher la cause de cette erreur,
pouvant être une simple faute de frappe dans le nom de la méthode, ou
parfois même une tentative de redéfinition dans le mauvais fichier.

40. Réflexion (Reflection)

Reflection (Réflexion) : Permet à un programme d'examiner et de
modifier son propre code à l'exécution.

C’est un concept avancé en programmation, qui est très abstrait pour
les débutants mais qu’il est bon de connaître si on le rencontre.

try {

// Créer une instance de la classe MyClass via la réflexion

Class<?> myClass = Class.forName("MyClass");

Object myObject = myClass.getDeclaredConstructor().newInstance();

// Appelle la méthode helloWorld de MyClass via la réflexion

Method method = myClass.getMethod("helloWorld");

method.invoke(myObject);

} catch (Exception e) {

e.printStackTrace();

}

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

127

41. Sérialisation (Serialization)

Serializable : Interface marquant une classe dont les instances
(objet) peuvent être sérialisées. Aucune méthode n'est requise pour
implémenter cette interface, elle sert principalement de marqueur.

public interface Serializable {

/**

* Cette interface ne déclare aucune méthode

* car elle ne fait office que de “marqueur”

* qui sera considéré par le langage Java.

*/

}

transient : Modificateur permettant d’ignorer un attribut durant le
processus de sérialisation lorsqu’on ne souhaite pas le transmettre.

Exemple : Un mot de passe sera souvent exclu de la sérialisation.

Permet également d’écarter les données inutiles à l’envoi et ainsi
réduire la taille du résultat à transférer.

public class Utilisateur implements Serializable {

private String email;

private transient String motDePasse;

}

Sérialisation : Processus de conversion d'un objet dans un format
universel (comme JSON, XML, etc.) pouvant être transmis à une autre
application. Processus souvent utilisé sur Internet lorsque plusieurs
applications développées différemment doivent communiquer ensemble,
ayant donc recours à des formats de données de transition.

Désérialisation : Processus inverse de la sérialisation, impliquant
la reconstruction d’objet(s) à partir de données au format universel
(comme JSON, XML, etc.). Requiert une étape d’analyse (parsing) des
données sérialisées afin de reconstituer correctement l’objet.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

128

Concepts et Principes de Développement 💡
[Development Concepts and Principles]

42. Bonnes Pratiques (Good Practices)

Cache : Espace mémoire d’une application dans lequel sont stockés
temporairement des résultats d’opérations afin qu’elle n’ait pas à
refaire le calcul si on lui redemande la même chose. C’est un des
premiers facteurs d’optimisation d’une application (en dehors de
l’optimisation du code de cette dernière) et qui est utilisé par la
quasi-totalité des solutions informatiques.

Design Patterns (Patrons de Conception) : Solutions réutilisables
pour des problèmes souvent rencontrés dans la conception logicielle.

Ils sont généralement divisés en trois catégories principales:

● Design Patterns de Création : Singleton, Factory, Builder…
● Design Patterns Structurels : Composite, Bridge, Adapter…
● Design Patterns Comportementaux : Iterator, State, Command…

L’apprentissage au moins théorique des Design Patterns est un très bon
moyen d’améliorer son niveau de conception en développement.
Une certaine maîtrise du domaine est cependant nécessaire pour
s’assurer de la bonne compréhension des tenants et des aboutissants.

Metadata (Métadonnées) : Donnée qui fournit des informations sur
d’autres données. Des informations comme l'auteur, le titre et la
durée d’un fichier vidéo sont des métadonnées de ce dernier.

Refactoring (Refactor) : Processus consistant à réorganiser le code
source d'un programme dans le but d'améliorer sa lisibilité, sa
maintenabilité et sa structure. Implique souvent une réécriture
complète du programme lorsqu’il a été mal conçu initialement ou que
les besoins ont trop évolué avec le temps.

Versioning (Gestion des Versions) : Principe visant à considérer
chaque modification d’un projet de développement comme une nouvelle
version de ce dernier, permettant ainsi de séparer logiquement et
chronologiquement les différents ajouts de code. Un principe
indispensable pour le développement logiciel, utilisé par
l’intégralité (sans exception ?) des projets commercialisés.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

129

43. Principes de Conception (Design Principles)

DRY (Don't Repeat Yourself) : Principe visant à réduire les
répétitions de code. La redondance (répétitions) d’une logique dans
votre code devrait être factorisée avec des fonctions (fonction).
C’est un grand principe qui doit guider les développeurs durant la
conception de leurs programmes. Concevoir un programme en essayant au
maximum de prévoir et ainsi d’éviter les répétitions de code aura,
dans la plupart des cas, un impact très positif sur la cohérence de
l’architecture finale de l’application.

KISS (Keep It Simple, Stupid) : Principe de conception encourageant
la simplicité et l'évitement de la complexité inutile. Les solutions
simples et efficaces sont souvent meilleures sur le long terme que les
solutions complexes. Les logiciels complexes ne sont en fait souvent
que des ensembles de petites fonctionnalités simples qui forment un
tout compliqué. Plus le développeur est expérimenté, plus il aura
tendance à utiliser le principe KISS et à le conseiller aux
développeurs en devenir.

YAGNI (You Aren't Gonna Need It) : Principe de développement qui
recommande de ne pas ajouter une fonctionnalité avant qu'elle ne
soit réellement nécessaire. Est-ce que vous pensez que des gens
auront besoin d’une fonctionnalité, ou est-ce que vous en êtes sûr ?
Sur quoi vous appuyez-vous pour le justifier ? Les comportements des
utilisateurs sont parfois inattendus, voire surprenants. Certaines
fonctionnalités qui semblaient évidentes peuvent se retrouver
totalement inutilisées par les utilisateurs finaux de l’application.

Les développeurs en devenir sont souvent enthousiastes et se
retrouvent à chasser plusieurs lapins en même temps. Si l’enthousiasme
est un très bon signe, il faut cependant garder la tête froide.
Chacune des fonctionnalités ajoutées est une complexité apportée dans
l’application. Elles auront besoin d’être maintenues, améliorées et
présentent toutes un potentiel risque d’erreur qui pourrait entraîner
une consommation de temps pour les corriger.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

130

SOLID : Ensemble de cinq principes de conception en Programmation
Orientée Objet qui visent à rendre les logiciels plus flexibles,
compréhensibles et maintenables.

Il est important de bien considérer que l’assimilation de ces cinq
grands principes requiert une certaine expérience en développement.

Vous trouverez ci-dessous de brèves explications de chacun d’entre
eux, qui vous sembleront très probablement vagues pour le moment.
L’important est de garder les grandes idées en tête, pour être capable
de les reconnaître quand vous les rencontrerez.

● S - Single Responsibility Principle (SRP): Un élément ne doit
avoir qu’un seul but. Une classe Voiture ne doit servir qu’à
représenter et manipuler des “voitures”, et ne doit donc
contenir que les données et les comportements liés à ce concept.

● O - Open/Closed Principle (OCP): Les entités logicielles
(classe, fonction, module, etc.) doivent être ouvertes à
l'extension, mais fermées à la modification. L’ajout d’une
nouvelle fonctionnalité ne doit pas entraîner une modification
du code déjà existant, sauf dans le cas d’un refactor.

● L - Liskov Substitution Principle (LSP): Les instances (objet)
d'une classe mère doivent pouvoir être remplacées par des
instances d'une classe fille sans affecter le programme.

● I - Interface Segregation Principle (ISP): Une classe
implémentant (implements) une interface ne doit pas se retrouver
avec des méthodes héritées qui ne lui serviront pas. Mieux vaut
faire plusieurs petites interfaces spécifiques qu’une seule
grande générale qui ne conviendra pas à tout le monde.

● D - Dependency Inversion Principle (DIP): Les modules de haut
niveau (logiques globales) ne devraient pas dépendre des modules
de bas niveau (solutions techniques). Quand on veut construire
une maison, on essaie au maximum de ne pas dépendre des
matériaux : on commence par un plan abstrait de ce qu’on veut
(logique globale), qu’on viendra adapter ensuite avec les
matériaux (solutions techniques).

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

131

Glossaire Général de la Programmation 📚
[General Programming Glossary]

Algorithme : Suite finie et ordonnée d’instructions (instruction)
dans un programme qui sera exécuté pour résoudre un problème.

Le mot algorithme fait souvent peur car il est associé aux morceaux de
code à la complexité élevée. Il n’en est pourtant rien: un code très
simple et facilement compréhensible est également un algorithme.

API (Application Programming Interface) : Intermédiaire entre deux
systèmes qui prend souvent la forme de fonctionnalités accessibles
publiquement et permettant d’utiliser un service.

L’interface Stream<E> en Java est une API qui, au travers de ses
méthodes très simples d’accès, permet de réaliser des opérations
complexes sur les structures de données (Collection, List, Set, etc.).

Lorsqu’on se connecte à une application en utilisant un compte Google,
Facebook, Microsoft, ou d’une autre compagnie, l’application concernée
utilise une API d’authentification utilisateur mise à disposition par
l’entreprise concernée pour “déléguer” ce travail (et ses enjeux).

Boilerplate : Terme faisant référence aux morceaux de code basiques
mais nécessaires d’une implémentation et dont la logique est
redondante, si ce n’est ennuyeuse, pour les développeurs.

Dans le cadre du principe d’Encapsulation en Java, l’implémentation
des accesseurs (Getter) et des mutateurs (Setter) peut être considérée
comme du code boilerplate, car ils sont présents dans chaque classe,
et dans la majorité des cas leur intérêt n’est pas aussi important que
le voudrait le principe d’Encapsulation.

Bibliothèque (Librairie) : Regroupement d’éléments (fonction,
classe, interface, enum, etc.) répondant à des besoins spécifiques
et que les développeurs peuvent utiliser.

En Java, la librairie Apache Commons propose un ensemble de solutions
(fonction) répondant à toutes sortes de problématiques communes au
développement, allant de la manipulation de chaînes de caractères
(String) à la gestion de fichiers (File), en passant par des
opérations mathématiques spécifiques et bien d'autres choses encore.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

132

Framework : Semblable à une bibliothèque, mais qui impose un système
de fonctionnement propre aux besoins auxquels il répond.

Le but final d’un framework est de créer un “cadre” de travail,
c’est-à-dire un environnement de travail optimal pour répondre à des
besoins, mais imposant certaines règles de fonctionnement.

Le framework Java Spring est, comme pour une bibliothèque, un
regroupement d’éléments (fonction, classe, interface, enum, etc.) que
les développeurs peuvent utiliser pour réaliser des applications web.

À la différence d’une bibliothèque, les fonctionnalités du framework
Java Spring imposeront un mode de fonctionnement, avec des attentes
spécifiques d’implémentations et une certaine direction quant à
l’architecture de l’application.

Buffer (Tampon) : Zone temporaire de stockage en mémoire utilisée
pour stocker des données en attendant qu'elles soient traitées.

Dans une entreprise de livraison qui possède des entrepôts de stockage
de marchandises, on peut voir les préparateurs de commandes comme un
exemple réel de “buffer” dans la vraie vie. Sans ces derniers, les
livreurs devraient aller chercher eux-mêmes les marchandises à livrer
dans l’entrepôt, ce qui leur ferait perdre un temps précieux.

Compilation : Étape de traduction d’un code source écrit par un
développeur en un code plus facilement compréhensible, et donc plus
efficacement exécutable, par une machine.

Même si la simple installation du JRE sur une machine peut lui
permettre de comprendre et d’exécuter un programme écrit en Java, rien
ne vaudra les performances obtenues dans son langage natif.

Interprétation : Exécution d’un programme sans compilation au
préalable. Les instructions sont traduites (interprétées) en un
langage machine seulement au moment de leur exécution.

Autrement dit, on peut dire qu’un programme interprété sera lu comme
si c’était la première fois à chaque exécution, tandis qu’un programme
compilé sera “appris par cœur” pour être plus efficace.

On constate une nette différence de performance en faveur des langages
compilés, mais l’interprétation possède également ses avantages,
offrant notamment une meilleure flexibilité et un débogage rapide.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

133

Chiffrement (Encryption) : Conversion d’informations en données
illisibles pour préserver leur confidentialité. Elles pourront être
déchiffrées, et donc retransformées, dans leur état d’origine.

Les sites Internet utilisant HTTPS chiffrent les informations de vos
échanges avec les serveurs web, évitant ainsi que ces dernières ne
puissent être lues durant leur transport entre vous et les serveurs.

Hachage (Hash) : Conversion d’informations similaire au chiffrement,
sauf qu’il n’y a pas de retour en arrière (déchiffrement) possible.

Les mots de passe, pour être stockés en base de données, ne sont pas
simplement chiffrés, au risque qu’une faille ne les expose et qu’ils
puissent être déchiffrés derrière. Ils seront plutôt hachés (hashed),
ce qui assure que même en cas de faille exploitable, l’information
soit pratiquement inutilisable par les pirates.

Débogage (Debugging) : Processus durant lequel un développeur essaie
d’identifier la ou les sources d’une erreur (bug / bogue) dans un
programme afin d’appliquer une correction.

Une compétence clé du métier de développeur, qui est source de
blocages et de frustrations lorsqu’elle n’est pas maîtrisée.

Déploiement : Mise à disposition d’une application aux utilisateurs.

Le déploiement d’une application web consiste à l’héberger dans un
serveur accessible sur Internet, impliquant donc plusieurs étapes
comme la configuration de l’environnement d’exécution ou encore
l’installation du code source de l’application.

Dépréciation (Deprecation) : Processus de marquage d’un élément
comme obsolète et destiné à ne plus être utilisé dans le futur.

L’annotation @Deprecated sur un élément en Java sert d’avertissement
aux développeurs, impliquant alors qu’ils doivent cesser de l’utiliser
en faveur d’une alternative ajoutée plus récemment.

Intégration Continue (Continuous Integration) : Action d’intégrer
fréquemment le travail d’une équipe de développement à un projet.

En général, au moins une fois par jour, en utilisant un outil de
gestion des versions (Versioning) comme Git. Chaque intégration est
automatiquement vérifiée par la construction du projet et l'exécution
de tests, ce qui permet de détecter rapidement les erreurs.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

134

IDE (Integrated Development Environment) : ”Environnement de
Développement Intégré”, soit un logiciel fournissant un ensemble
complet d'outils pour assister les développeurs dans leur métier.

Il suffit d’essayer l’expérience d’écrire un programme sur une
application de traitement de texte basique comme Bloc-notes sur
Windows pour se rendre compte de l’immense rôle que joue un IDE.

Instruction : Ligne de code demandant à la machine d’effectuer une
opération spécifique. Se termine par un ; (point-virgule) en Java.

À la différence de son cousin Python dans lequel un saut de ligne
indique la fin d’une instruction, les sauts de ligne en Java n’ont
pour but que de rendre le code plus lisible pour les humains.
Seul le ; est considéré comme une fin d’instruction pour le langage.

Implémentation : Résultat de l’action d’implémenter, c’est-à-dire le
fait d’écrire du code. Un développeur implémente des solutions pour
répondre à des besoins. Une méthode contient une implémentation
répondant à un besoin spécifique.

Middleware (Intergiciel) : Système qui se positionne entre des
applications ou des logiciels. En passant une commande sur Amazon, on
peut dire qu’Amazon se positionne en tant que “middleware” entre vous
et le magasin qui vend le produit désiré.

Overflow (Dépassement) : Situation problématique qui survient
lorsqu’un dépassement de capacité (de “taille”) est rencontré.

En Java, le résultat de l'opération arithmétique 50 * 3 (= 150)
générerait un dépassement (Overflow) s’il était affecté à une variable
de type byte, car ce type ne peut recevoir que les valeurs comprises
dans l’intervalle allant de -128 jusqu'à +127.

Parallélisme : Exécution de plusieurs opérations en simultané, en
parallèle. Répartir le travail dans une équipe revient à paralléliser
les tâches à accomplir pour arriver plus rapidement au but.

Récursion (Récursivité) : Technique de programmation où une fonction
s’appelle elle-même. C’est une logique qui s’apparente à une boucle:
l’exécution d’un bloc de code est répétée tant qu’une condition n’est
pas remplie. Souvent utilisée pour parcourir un arbre d’information,
permettant ainsi de ne pas avoir à connaître son étendue à l’avance.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

135

Formats de Fichiers 📄
[File Formats]

.java (Java) : Extension pour les fichiers contenant le code source
d’un programme écrit en langage Java. C'est le format de base avec
lequel tout développeur Java travaille quotidiennement.

.class (Classe) : Extension pour les fichiers bytecode Java générés
par le compilateur (compilation) à partir des fichiers .java. Le
bytecode est une forme intermédiaire du code, prêt à être exécuté par
la Machine Virtuelle Java (JVM).

.jar (Java ARchive) : Format d'archive utilisé pour distribuer un
ensemble de fichiers Java comme une seule unité d'application ou de
bibliothèque. Un fichier .jar peut être intégré à un projet en tant
que bibliothèque externe, ou être exécuté comme une application en
utilisant le JRE via une ligne de commande.

.properties (Properties) : Format pour les fichiers contenant des
propriétés utilisées pour configurer des applications Java.

Ils stockent des paires clé-valeur (comme une Map) qui peuvent être
chargées dans l'application au moment de l'exécution.

.xml (XML) : “eXtensible Markup Language” est un langage de balisage
conçu pour stocker et transporter des données. Développé et
recommandé comme un standard par le World Wide Web Consortium (W3C) à
la fin des années 1990, le XML a été conçu pour être à la fois
humainement lisible et facilement traité par les machines.

.json (JSON) : “JavaScript Object Notation”, un format de données
utilisé pour le stockage et le transfert d'informations structurées
entre des systèmes distincts. À l'origine, le format JSON a été conçu
pour faciliter le transfert de données entre le serveur et le
navigateur web dans des applications basées sur JavaScript.
L’efficacité et la praticité de ce format ont démocratisé son
utilisation, allant même jusqu’à son intégration dans des cas d’usages
où le langage JavaScript n’est pas impliqué.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

136

Historique des Versions 📅
[Version History]

Version 1.0.0 :
● Date de publication : Mars 2024
● Change Log :

○ Première version du document - Intégration de la majorité
des éléments en lien avec la programmation Java.

Version 1.8.6 :
● Date de publication : Septembre 2024
● Change Log :

○ Majeur:
■ Adaptation de la colorimétrie pour la publication du

guide au format papier (disponible sur Amazon).
■ Ajout d’un sommaire alphabétique détaillé pour

simplifier la navigation dans le document.
■ Correction d’une erreur sur la boucle while.
■ Correction du code sur la réflexion (reflection).
■ Correction du code sur le mot-clé synchronized.
■ Correction du code sur la méthode Stream.distinct().
■ Correction du code sur la méthode Map.entrySet().
■ Correction du code sur la méthode

Collection.contains(E element).

○ Mineur:
■ Adaptation du mode d’emploi pour la version papier.
■ Utilisation de la classe ArrayList au lieu de la

classe LinkedList dans les exemples de codes où son
usage n’était pas nécessaire.

■ Corrections de fautes d’orthographe et de grammaire.
■ Améliorations de certaines définitions.
■ Améliorations de certaines tournures de phrase.
■ Améliorations de certaines traductions.

Guillaume JACQUELET https://www.jiraws.com

https://www.jiraws.com
https://www.jiraws.com

