Core

Master Guide

Ecrit par : Guillaume “JirAWS” JACQUELET
Date de publication : 2024
Version : 1.8.6

YouTube : https://www.youtube.com/c/JirAWS
Site web : https://www.jiraws.com
Mail : contact@jiraws.com

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Sommaire A
[Summary]

Introduction

Note de 1’Auteur

Mises a Jour

Mode d’Emploi

Sommaire Alphabétique (Alphabetical Summary)

1. Définitions Générales (General Definitions)

2. Les Quatre Piliers de la POO (The Four Pillars of OOP)

3. Environnement Java (Java Environment)

4. Mots-clés Java (Java Keywords)

5. Classes et Interfaces Java (Java Classes and Interfaces)

6. Méthodes Java (Java Methods)

7. Principes de Conception (Design Principles)

8. Formats de Fichiers (File Formats)
Bases du Langage Java (Java Language Basics)

7. Environnement Java (Java Environment)

8. Syntaxe de base (Basic Syntax)

9. Types Primitifs (Primitive Types)

10. Fonctions (Functions)

11. Opérateurs (Operators)

12. Affirmations (Assertions)

13. Structures Conditionnelles (Conditional Structures)

14. Boucles et Itérations (Loops and Iterations)

15. Imports et Paquets (Imports and Packages)
Programmation Orientée Objet (Object Oriented Programming)

16. Les Quatre Piliers de la POO (The Four Pillars of OOP)

17. Objets (Objects)

18. Constructeurs (Constructors)

19. Classes (Classes)

20. Héritage (Inheritance)

21. Interface (Interface)

22. Enumérations (Enumerations)

23. Modificateurs (Modifiers)

24. Immutabilité (Immutability)

25. Types Enveloppes (Wrappers)

26. Manipulation de Texte (String)

27. Manipulation Numérique (Number)

28. Dates et Temps (Dates and Times)

L\
L AWS

W OV 00 00 N O v b

=
()

11
12
13
13

14

14
15
18
20
23
26
27
31
36

37
38
40
43
46
49
51
53
54
59
62
66
VE]
78

https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.w8u06xj4yc6k
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2vaicbtixn46
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.w8u06xj4yc6k
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2vaicbtixn46
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2760jtgifnvg
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.gnmzb6dak8sn
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.6vd1qgnyo453
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.evcrmeb27l5t
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.jwcx0jfyt4ih
https://docs.google.com/document/d/16a3tj6U4HMZcRISe4R57L_I_wmbobru1aHlyw1_dz80/edit#heading=h.2760jtgifnvg
https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide
Gestion des Données (Data Management) 80
29. Tableaux (Arrays) 80
30. Généricité (Generics) 81
31. Collections (Collections) 82
32. Listes (Lists) 88
33. Ensembles (Sets) 89
34. Dictionnaires (Maps) 91
35. Files d’Attente (Queues) 96
36. Flux (Streams) 97
Gestion des Exceptions (Exception Handling) 104
37. Objets Jetables (Throwables) 104
38. Exceptions (Exceptions) 111
39. Erreurs Systeme (System Errors) 114
40. Ressources Gérables (Manageable Resources) 115
Entrée / Sortie (Input / Output) 116
41. Scanner (Scanner) 116
42. Fichiers (Files) 117
Avancé (Advanced) 121
43. Programmation Fonctionnelle (Functional Programming) 121
44. Fils d’Exécution (Threads) 122
45. Annotations (Annotations) 126
46. Réflexion (Reflection) 126
47. Sérialisation (Serialization) 127

Concepts et Principes de Développement (Dev. Concepts and Principles) 128

48. Bonnes Pratiques (Good Practices) 128
49. Principes de Conception (Design Principles) 129
Glossaire Général de la Programmation (General Programming Glossary) 131
Formats de Fichiers (File Formats) 135
Historique des Versions (Version History) 136

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Introduction ¥
[Introduction]

Bienvenue dans 1le JavaCore Master Guide, 1le guide complet des
mots-clés, concepts et principes de programmation a connaitre pour
devenir développeur Java.

La promesse de ce document est de fournir une définition claire,
rédigée personnellement par 1’'auteur (JirAWS), pour chacun des
termes jugés incontournables du langage Java.

Le monde de la programmation Java est vaste, et étre capable de
donner un sens a chaque terme de ce langage est primordial pour
comprendre son envergure et ainsi mieux structurer ses idées.

L'Univers de 1'informatique étant majoritairement anglophone, vous
trouverez dans ce document des traductions anglais <-> frangais,
permettant de mieux saisir la signification derriére les anglicismes
fréquemment rencontrés sur Internet et dans les documentations
souvent anglophones.

Bien qu'il soit de bonne pratique d’écrire son code (commentaires,
noms de variables, méthodes, classes, etc.) en anglais, ce document
vise a faciliter 1'apprentissage de la programmation et s'écarte
donc volontairement de cette pratique pour réduire les obstacles.
Les exemples de code fournis contiennent délibérément du “franglais”
(frangais/anglais) pour en faciliter la compréhension.

Ce document sert également de support de connaissances tout au long
du programme JavaCore (Essential, Plus+ et Elite), une formation
Java de A a Z disponible sur le site (https://www.jiraws.com).

https://www.jiraws.com
https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Note de 1'Auteur g
[Author’s Note]

Nous, développeurs, avons tous des termes, des concepts et des
principes de programmation que nous ne connaissons que vaguement,
sans étre capables de les expliquer, ne serait-ce qu’'en surface.

C'est en cela que j'ai tenu a ce que ce document soit le plus
complet possible et accessible a tous. Les définitions ont chacune
été rédigées par mes soins, avec mes mots et ma vision pédagogique
des choses pour associer des phrases simples aux différents éléments
de la programmation en Java.

A 1'ére de 1'IA, écrire un tel document sans assistance serait un
challenge de taille, mais c’'est bel et bien la direction qui a été
choisie. Les définitions et les exemples de code ont entiérement été
rédigés manuellement, et 1l’'usage de 1’'IA (ChatGPT) n’a été employé
que pour assurer la qualité finale du document avec notamment des
vérifications de contenu ou encore des corrections orthographiques.

La programmation est un amalgame de 1logiques a comprendre et de
connaissances a apprendre, et ce document a pour but de jouer ce
réle de recueil de connaissances minimales. C’est pourquoi ce
document a été rédigé pour jouer un rdole important dans le programme
JavaCore, ma formation Java de A a Z pour débutants.

Je vous conseille de consommer 1le contenu de ce guide sans
modération car 1l’entiéreté des termes présents et de leurs
définitions aura une utilité, to6t ou tard, dans votre carriere.

Si vous connaissez 1'ensemble des définitions présentes dans ce
guide, vous pouvez alors considérer avoir une trés bonne
connaissance théorique du monde de la programmation en Java.

Comme d’'habitude, vous avez la parole. Si vous estimez qu’'un terme
devrait, selon vous, avoir sa place dans ce document, n’hésitez pas
a m'en faire part (par mail: contact@jiraws.com, ou via Discord).

Bon apprentissage !

Guillaume (JirAWS)

mailto:contact@jiraws.com
https://discord.gg/HDQG7KfSsn
https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Mises a Jour ©&§
[Updates]

Ce document sera amené a évoluer dans le temps, avec des ajouts de
nouvelles définitions et d’'exemples de code, et si nécessaire, des
corrections voire méme des améliorations du contenu déja présent.

Les différentes mises a jour auront toutes pour objectif de faire en
sorte que ce guide conserve sa promesse initiale : proposer une
explication claire pour chaque mot-clé a connaitre dans le monde du
langage Java.

Pour suivre les évolutions, une annexe de 1’historique des versions
est disponible en fin de document.

Disponible sur Vous préférez votre lecture sur papier ?

amazon Recevez votre exemplaire broché, en couleur,
u

avec du papier de haute qualité !

Soutien §
[Support]

Pour celles et ceux qui souhaiteraient soutenir le développement de
ce document, ou tout simplement me remercier pour les efforts
fournis, une plateforme de dons est disponible

i i https://www.buymeacoffee.com/JirAWS .

Note : On reste dans le théme de Java, avec pour symbole le café.

https://www.buymeacoffee.com/JirAWS
https://www.jiraws.com
https://www.jiraws.com

& Core 2

= Master Guide
-
1] °
Mode d’'Emploi 3\
[How To]
Voici une breve illustration explicative de la structure du contenu.
Mot-clé . Clé Etr"anger*e : Mot dont la définition
A : est présente dans ce document.
. 1
! i
Definition assert : Instruction vérifiant qu’une expression booléenne soit
Principale vraie (true) et lance une AssertionError si ce n'est pas le cas.
Particuliérement utile pour les tests unitaires. Requiert un
———re paramétrage lors du démarrage du programme pour que 1l'instruction
: assert soit bien considérée et puisse renvoyer une erreur.
i
Compléments] int result = 2 + 3;
I

d’Explications =---

// Assert (affirme ue le résultat attendu de 2 + 3 est 5
et Exemples (affirme) q

assert result == : "Doit étre égal a 5";

== Exemple de code

system.out.println("Le test a réussi.”);

'/ Résultat (affichage) dans la console
Le test a réussi.

Résultat affiché lorsqu’on
exécute le code d’exemple

Conseil de recherche avec 1'outil CTRL+F pour parcourir le document.

Ajout d’un espace et de : apres
le terme recherché

Terme

e :
Recherché assert 1sur1

I
i
----# 0util de recherche (CTRL+F)
L’outil de recherche emménera
directement a la définition du
terme recherché, plutét qu’a =-----4----- - Instruction v

une occurrence présente dans le vraie (true) et lance
document

Particuliérement utile
paramétrage lors du dép

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Sommaire Alphabétique @
[Alphabetical Summary]

1. Définitions Générales (General Definitions)

Algorithme
Annotation
API

Argument
Attribut
Auto-boxing
Auto-unboxing
Bibliotheéque
Bloc de code
Boilerplate
Boucle

Buffer

Cache

Casting
Chiffrement
Classe Utilitaire
Compilation
Concaténation
Condition
Constante
Constructeur
Débogage
Déclaration
Définition
Déploiement

Dépréciation

131
126
131
21
47
63
63
131
20
131
30
132
128
64
133
48
132
66
27
15
43
133
16
47
133
133

Désérialisation
Design Patterns
Expression Booléenne
Fonction
Framework
Generics

Getter

Hachage

IDE

Immuable
Implémentation
Inférence
Initialisation
Instance
Instanciation
Instruction
Intégration Continue
Interprétation
Itération
Lambda Function
Membre

Metadata
Méthode
Middleware
Modificateur

Objet

127
128
24
20
132
81
56
133
134
59
134
16
16
40
43
134
133
132
30
VA
47
128
47
134
54
40

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Opérateur 23 Opérateur Affectation 24
Opérateurs Arithmétiques 23 Référence 16
Opérateurs de Comparaison 25 Reflection 126
Opérateurs Incrémentation 23 Regex 67
Opérateurs Logiques 25 Sérialisation 127
Overflow 134 Setter 57
Overload 48 StackTrace 104
Override 47 Stream 97
Parallélisme 134 Syntaxe 15
Parametre 21 Tableau 80
Portée de Variable 17 Text Blocks 68
Primitif 18 Type 15
Procédure 22 Variable 15
Programmation Orientée Objet 37 Versioning 128
Récursion 134 Visibilité 54
Refactoring 128 Wrapper 62

2. Les Quatre Piliers de la P00 (The Four Pillars of OOP)

Abstraction 38 Héritage 39

Encapsulation 38 Polymorphisme 39

3. Environnement Java (Java Environment)

JDK 14 JVM 14
JRE 14 GC 14

https://www.jiraws.com
https://www.jiraws.com

'y

4. Mots-clés Java (Java Keywords)

abstract
assert
boolean
break
byte

case
catch
char
class
continue
default
do

double
else

else if
enum
extends
false
final
finally
float

for
for-each
if
implements
import
instanceof
int
interface

long

Core

Master Guide

49
26
19
34
18
29
106
19
46
85
29
32
19
27
28
59
49
19
60
107
19
33
33
27
52
36
42
18
51
18

native

new
non-sealed
null
package
permits
private
protected
public
record
return
sealed
short
static
super
switch
synchronized
this

throw
throws
transient
true

try
try-with-resources
var

void
volatile
while

yield

58
43
50
16
36
50
55
55
54
61
22
50
18
58
41
29
125
40
110
110
127
19
105
108
16
22
124
31
30

10

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

5. Classes et Interfaces Java (Java Classes and Interfaces)

ArithmeticException
ArrayIndexOutOfBoundsException
ArraylList<E>
AssertionError
AutoCloseable
BigDecimal

BigInteger

Boolean

BufferedReader
BufferedWriter

Byte

Character
ClassCastException
ClassNotFoundException
Closeable
Collection<E>
Collections
Comparable<T>
ConcurrentModificationException
Date

Double

Duration

Error

Exception

File
FileNotFoundException
FileReader

FileWriter

Float

HashMap<K, V>

HashSet<E>

111
112
88
26
115
74
73
63
119
120
62
62
112
113
115
82
82
87
112
78
62
79
114
111
117
113
118
120
62
91
89

IndexOutOfBoundsException

Integer
IOException
Iterator
LinkedList<E>
List<E>
ListIterator
LocalDate
LocalDateTime
LocalTime

Long

Map<K, V>

Math
NullPointerException
Object
OutOfMemoryError
Queue<E>
Runnable
RuntimeException
Scanner
Serializable
Set<E>

Short
SQLException
StackOverflowError
Stream<E>

String

Thread

Throwable
TreeMap<K, V>

TreeSet<E>

112
62
113
86
88
88
86
78
79
78
62
91
75
111
44
114
96
122
111
116
127
89
62
113
114
97
66
123
104
92
90

11

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

6. Méthodes Java (Java Methods)

Collection.
Collection.
Collection
Collection
Collection.
Collection.
Collection.
Collection.

Collection.

add(E element)

clear()

.contains(E element)

.get(int index)

isEmpty()
iterator()
remove (E element)
size()

stream()

Collections.sort(List<T> list)

Integer.parseInt(String str)

Integer.valueOf(String str)

Map.entrySet()

Map.
Map.
Map.
Map.
Map

get(K key)

keySet ()

put(K key, V value)
remove (K key)

.values()

Math.abs(int a)

Math.min(int a, int b)

Math.max(int a, int b)

Math.random()

Math.round(double a)

83
85
84
84
86
87
83
85
97
82
74
75
95
93
94
92
93
94
77
75
75
76
76

Math.sqrt(double a)

Object.
Object.
Object.
Object.
Stream.
Stream.
Stream.
Stream.
Stream.
Stream.
String.
String.
String.
String.
String.
String.
String.
String.
String.
String.
String.

String.

equals(Object obj)
getClass()
hashCode ()
toString()

)

distinct(

filter(Predicate<T> pred)
forEach(Function map)

map (Function<T,R> map)

sorted()
tolList()

charAt(int index)

endsWith(String suffix)

equals(String str)

index0f(String target)

lastIndexOf(String target)

length()

split(String regex)

startsWith(String pref)

substring(int b, int e)

toLowerCase()
toUpperCase()

trim()

String.replaceAll(String t, String r)

77
44
45
44
45
163
98
100
99
101
102
69
71
73

72
68
70
71
69
71
72
70

70

12

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

7. Principes de Conception (Design Principles)

DRY 129 WORE
KISS 129 YAGNI
SOLID 130

8. Formats de Fichiers (File Formats)

.class 135 .json
.jar 135 .properties
.java 135 .xml

14
129

135
135
135

13

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Bases du Langage Java &
[Java Language Basics]

1. Environnement Java (Java Environment)

JVM (Java Virtual Machine) : Moteur d'exécution qui permet de faire
fonctionner des applications Java. C’'est grace a elle que 1'on peut
exécuter des programmes écrits en langage Java.

JRE (Java Runtime Environment) : Environnement d'exécution Java qui
comprend la JVM et les bibliothéques (bibliothéque) nécessaires pour
exécuter des applications Java. Il contient tous les éléments
nécessaires pour faire fonctionner des applications Java, mais il ne
contient pas les outils de développement du JDK.

JDK (Java Development Kit) : Kit de développement pour Java. Il
inclut tout le nécessaire pour développer des applications Java, y
compris un compilateur (compilation), des outils de débogage, ainsi
que la JVM pour tester les applications développées. C’'est 1’élément
que vous devez installer sur votre ordinateur pour pouvoir écrire des
programmes en Java sur votre IDE (Eclipse, Intellid, etc.).

Garbage Collection (Collecte des Ordures) : Processus interne du
langage Java qui vient débarrasser la mémoire vive des éléments qui
ne sont plus utilisés. Une variable déclarée dans un bloc de code
sera, aprés exécution, détectée comme inutilisée par le Garbage
Collector et supprimée de la mémoire pour libérer la place.

WORE (Write Once, Run Everywhere) : Promesse centrale du langage
Java visant a rendre un programme compatible multi-plateforme, c’est
a dire exécutable sur “tous” les systemes disposant d’une JVM, sans
devoir adapter le code a chaque fois. En pratique, 1'idéal du "Write
Once, Run Everywhere" est complexe a réaliser, car de nombreux
facteurs tels que les différences d'environnements d'exécution et les
spécificités des plateformes entrent en jeu. Une maitrise approfondie
de Java et de son écosysteme est nécessaire pour naviguer ces défis et
atteindre une véritable portabilité du code.

14

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

2. Syntaxe de base (Basic Syntax)

Syntaxe : Ensemble de regles qui définissent les combinaisons
valides de symboles pour écrire un programme.

Par exemple, la valeur d’une chaine de caracteres (String) en Java est
“ * (apostrophes)
entraine une erreur de compilation car ces derniers sont réservés pour
les caractéres (char / Character).

'

écrite entre des “ (guillemets). L’utilisation des

String texte = "Un texte";

char caractere = 'c';

Variable : Espace mémoire accessible par un nom, permettant de
stocker une valeur de type primitif ou référence. Le terme “variable”
vient directement du fait que sa valeur puisse varier dans le temps.

int age = 25;

age = 26; // On peut changer La valeur affectée a La variable

Constante : Une variable dont la valeur ne peut pas étre changée
apres son initialisation. Comme une variable, une constante posséde
un nom et un type. En Java, il faut ajouter le modificateur final a
une variable pour qu’elle soit considérée comme une constante.

final int age = 25;

age = 26; // Erreur, une constante ne peut pas changer de valeur

Type : “Etiquette” indiquant la nature de la donnée que contiendra
une variable, le retour d’'une méthode ou méme un élément générique
(dans le cas de la généricité). C’est une information qui est
notamment considérée par un IDE, permettant ainsi aux développeurs
d’écrire du code plus sdir et d' éviter les erreurs.

https://www.jiraws.com
https://www.jiraws.com

G
=
-
<

Core

Master Guide

Déclaration : Etape de création d'une variable, nécessitant la
combinaison d’un type et d'un nom. C’est une étape nécessaire pour
réserver un espace mémoire dédié a la valeur qui sera affectée durant
son initialisation.

// Déclaration d'une variable nommée "age" de type "int" (entier)
int age;

Initialisation : Premiére affectation de valeur a une variable.

// Déclaration, puis initialisation, d'une variable nommée "age"
int age;
age = 25;

// Déclaration et initialisation d’une variable nommée "annee"
int annee = 1995;

Référence : Type de données composite qui pointe vers un objet dans
la mémoire. En lien direct avec la notion d’'objet en Java, des
structures regroupant les données et améliorant leur manipulation.

null : Valeur spéciale d’'une variable référence indiquant que cette
derniere est “vide”, ou plutot, qu’'elle n’'est affectée a aucune
référence mémoire (et donc, aucun objet).

// Une variable référence est créée, mais ne pointe vers aucun objet
Object object = null;

var : Type spécial d'une variable a utiliser dans sa déclaration
pour invoquer l'inférence de type.

var age = 25;

Inférence : Processus par lequel la compilation détermine
automatiquement le type d'une variable a partir de sa valeur.

/**
* Le langage Java déduira automatiquement que La variable "age"
* est affectée a une valeur numérique entiere (int)
*/

var age = 25;

https://www.jiraws.com
https://www.jiraws.com

/)

Core 17

Master Guide

Portée de Variable : Rayon d’'action d’'une variable déterminant dans
quelle(s) partie(s) du code cette derniére peut étre accédée et
manipulée. Directement 1ié a la notion de bloc de code.

Une variable déclarée dans le bloc de code d’une condition if ne sera
accessible que dans ce dernier, ou dans ceux se trouvant a l’intérieur
(dans une autre condition imbriquée par exemple).

int age = 25;
if (age >= 18) {
System.out.println("Vous étes majeur en France.");

// La variable age est également accessible dans ce bloc de code
if (age >= 65) {
System.out.println("Vous étes également senior en France");

// Variable déclarée dans Le bloc de code du 1if
int uneVariableDansLeBlocIf = 1337;

/**
* Erreur: La variable a été déclarée dans un sous-bloc de code.
* Le mécanisme de la Portée de Variable empéche donc son utilisation.
*/

uneVariableDansLeBlocIf = 2000;

// Résultat (affichage) dans La console
Vous étes majeur en France.

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

3. Types Primitifs (Primitive Types)

Primitif : Type de donnée le plus basique en programmation,
permettant de représenter des informations primaires.

En Java, on retrouve 8 types primitifs couvrant 1’ensemble des besoins

de représentation des données:
e Valeurs Numériques Entiéres : byte, short, int et long.
e Valeurs Flottantes (a virgule) : float et double.
e Valeurs Caractéres : char.

e Valeurs Booléennes : boolean.
byte : Type de données signé sur 8 bits pour les toutes petites
valeurs numériques entieéres. Intervalle de valeurs : -128 a +127
byte distanceSalleDeSport = 2;
short : Type de données signé sur 16 bits pour les petites valeurs
numériques entiéres. Intervalle de valeurs : -32.768 a +32.767
short rayonPlaneteTerre = 6371;
int : Type de données signé sur 32 bits pour les valeurs numériques
entieres. Intervalle de valeurs : -2.147.483.648 a +2.147.483.647
int distanceTerrelLune = 384400;
long : Type de données signé sur 64 bits pour les grandes valeurs
numériques entiéres. Intervalle de valeurs : -2763 a +2163-1

// On utilise 'L' ou 'L' a la fin de Lla valeur pour indiquer "long"
long distanceSoleilNeptune = 4500000000L ;

18

https://www.jiraws.com
https://www.jiraws.com

'Y

Core 19

Master Guide

char : Type de données non-signé sur 16 bits pour les caracteéres.

Intervalle de valeurs : 0 a 65.535. Les 65536 premiers caracteéres
Unicode (de U+0006 a U+FFFF) font partie de la Plage du Plan
Multilingue de Base (BMP pour Basic Multilingual Plane).

char aMajuscule
char bMajuscule
char aMinuscule

'"A'; // Valeur entiére Unicode associée : 65
'B"'; // Valeur entiere Unicode associée : 66
'a'; // Valeur entiére Unicode associée : 97

float : Type de données sur 32 bits pour les nombres a virgule
flottante simple précision. Intervalle de valeurs : 1.4E-45 a
3.4028234E38

// On utilise 'F' ou 'f' a la fin de Lla valeur pour indiquer "float"
float tailleMoyenneHumain = 1.75F;

double : Type de données sur 64 bits pour les nombres a virgule
flottante double précision. Intervalle de valeurs : 4.9E-324 a
1.79769313486231157E368

double approximationPi = 3.141592653589793;

boolean : Type de données sur 1 bit pour les valeurs true (vrai) ou
false (faux). Basé sur les transistors des processeurs de nos
machines, de petits “interrupteurs” laissant, ou non, circuler
l’électricité : ouvert (vrai / true / 1), ou fermé (faux / false / 0).

true : Valeur booléenne vraie. Equivalent de 1 en binaire.

boolean like = true;

false : Valeur booléenne fausse. Equivalent de O en binaire.

boolean dislike = false;

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

4. Fonctions (Functions)

Fonction : Sous-programme composé d’'un nom et d'un bloc de code
pouvant avoir des paramétres (paraméetre) et retourner (renvoyer) un
résultat suite a son exécution.

Lorsque 1’on demande a son (gentil) collégue de nous ramener un café,
on fait appel a sa fonction “faireUnCafe()” contenant les actions
(instruction) a réaliser, étape par étape, pour faire un café et par
la suite nous le donner (renvoyer).

TypeDeRetour nomDuProgramme(TypeDuParametre nomDuParamétre) {

instructioni;
instruction2;
instruction3;

return valeurRetournée;

Bloc de code : Ensemble d’instructions (instruction) délimitées par
des accolades { } en Java.

Des éléments comme une méthode, une condition et une boucle possédent
tous un bloc de code associé et ne sont en fait que des maniéres
différentes de démarrer leur exécution.

La notion de bloc de code est liée a celle de la portée de variable.
// Un bloc de code ne contenant qu’une seule instruction

System.out.println("Bloc de code affichant ce texte");

}
// Un bloc de code peut en contenir d’autres
{
{
System.out.println("Bloc de code affichant ce texte");
}
}

20

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Paramétre : Variable spécifiée dans la déclaration d'une fonction
agissant comme un "espace réservé" pour une valeur (argument) qui
sera transmise au moment de 1'appel de cette derniére.

C’est ce qui permet de fournir des informations (valeurs) a une
fonction exécutée, malgré les contraintes de la portée de variable.

// Une fonction sans paraméetre ()
void afficherNomFormation() {
System.out.println("JavaCore");

// Une fonction avec un seul paramétre (int a)
int multiplierParDeux(int a) {
return a * 2;

// Une fonction avec deux parametres (int a, 1int b)
int addition(int a, int b) {
return a + b;

Argument : Valeur passée dans le paramétre d’'une fonction au moment
de son appel (exécution). On peut voir un parametre comme 1’'étape de
déclaration d’une variable, et un argument comme une valeur
d’initialisation affectée lors de 1’appel de la fonction.

void fonctionl(int a, int b) {
/**
* g et b sont ici des paramétres de la fonctionl

* soit des variables en attente d’initialisation
74

void programme() {

/**
* 2 et 4 sont des valeurs (arguments) passées dans les paramétres
* g et b de Lla fonctionl Lors de son appel
*/

fonctionl(2, 4); // Instruction quil appelle (exécute) La fonctionl

21

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

return : Instruction qui termine 1'exécution d'une fonction et
permettant de retourner une valeur si nécessaire.

Une fonction sans cette instruction s’arrétera d’elle-méme quand elle
aura terminé d’exécuter ses instructions.

// Une fonction qui renvoie le résultat de L’addition de deux paramétres
int addition(int a, int b) {
return a + b;

// Une fonction "appelle" Lla fonction "addition" et récupére Lle résultat
void programme() {

int resultat = addition(2, 4);

System.out.println("Résultat : + resultat);

// Résultat (affichage) dans La console
Résultat : 6

void (vide) : Type de retour spécial indiquant qu’une fonction ne
renvoie rien (aucun résultat). On peut alors dire que cette fonction
est une procédure.

// Une fonction qui ne fait qu’afficher Lle texte passé en argument
void affichageDeTexte(String texte) {
System.out.println(texte);

Procédure : Une fonction qui ne retourne pas de résultat, et qui
utilise donc le type de retour void. C’est un terme trés peu utilisé
en Java, bien qu’une fonction ne retournant aucun résultat puisse
quand méme étre considérée comme une procédure.

22

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

5. Opérateurs (Operators)

Opérateur : Symbole spécial utilisé pour effectuer des opérations
spécifiques sur une ou plusieurs opérandes. Il existe différents
opérateurs, répondant chacun a des besoins spécifiques.

Opérateurs Arithmétiques : Ensemble d’opérateurs (opérateur)
permettant de réaliser les opérations mathématiques de base.

+

(Addition): Additionne deux valeurs.
(Soustraction): Soustrait une valeur d'une autre.
e * (Multiplication): Multiplie deux valeurs.

e / (Division): Divise une valeur par une autre.
(Modulo): Renvoie le reste de la division.

o°

inta=2+3;//5

int b=9-5; // 4

int ¢ = a *b; // 20 car 5 x 4

int d =c / 2; // 10 car 20 / 2

inte=d%2; // 0 car 106 = 2 x 5 et il reste 0.

Opérateurs Incrémentation / Décrémentation : Paire d'opérateurs
(opérateur) permettant 1'addition et la soustraction de 1.

e ++ (Incrémentation): Augmente la valeur de 1.

e -- (Décrémentation): Diminue la valeur de 1.
int a = 5;
System.out.println("Valeur initiale de 'a' : " + a);

at+; // a =a + 1;

System.out.println("Valeur de 'a' aprés incrémentation (++) "+ a);
a--; // a=a - 1;
System.out.println("Valeur de 'a' aprés décrémentation (--) "+ a);

// Résultat (affichage) dans Lla console

Valeur initiale de 'a' : 5

Valeur de 'a' aprés incrémentation (++) : 6

Valeur de 'a' aprés décrémentation (--) : 5

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Opérateur Affectation / Assignation : Ensemble d’'opérateurs

(opérateur) ayant pour role d’'attribuer une valeur a une variable.

Pour simplifier 1’'écriture de code, des opérateurs d’affectation
(assignation) combinés ont €été ajoutés au langage Java.

e = (Affectation): Affecte une valeur a une variable.
e += (Addition puis affectation): Additionne puis affecte.
e -= (Soustraction puis affectation): Soustrait puis affecte.

e *= (Multiplication puis affectation): Multiplie puis affecte.
e /= (Division puis affectation): Divise puis affecte.

e %= (Modulo puis affectation): Applique le modulo puis affecte.

int a = 5;
System.out.println("Valeur initiale de 'a' : " + a);

a+=6; // a=a+ 6;
System.out.println("Valeur de 'a' aprés addition (+) : " + a);

a-=5 //a=a-5;

System.out.println("Valeur de 'a' aprés soustraction (-) : " + a);
a *=4; // a=a * 4;

System.out.println("Valeur de 'a' aprés multiplication (*): " + a);
a/=3;//a=a/ 3;

System.out.println("Valeur de 'a' aprés division (/) : " + a);

a%=2; //a=al%2;
System.out.println("Valeur de 'a' aprés modulo (%) : " + a);

// Résultat (affichage) dans La console

Valeur initiale de 'a' : 5

Valeur de 'a' aprés addition (+) : 11

Valeur de 'a' aprés soustraction (-) : 6
Valeur de 'a' aprés multiplication (*): 24
Valeur de 'a' aprés division (/) : 8
Valeur de 'a' aprés modulo (%) : ©

Expression Booléenne : Combinaison d’opérandes dont le résultat est

une valeur de type boolean. C’est ce qu’un développeur utilise
quotidiennement en programmation, car la logique informatique
contemporaine est basée sur ces derniéres.

24

https://www.jiraws.com
https://www.jiraws.com

< 5 Core

- Master Guide

Opérateurs de Comparaison : Ensemble d’'opérateurs (opérateur)
comparant deux valeurs et renvoyant un résultat de type boolean.

o ==
o =

[J >

boolean

boolean

boolean

boolean

boolean

boolean

(Egal a): Vérifie si deux valeurs sont égales.

(Différent de): Vérifie si deux valeurs sont différentes.
(Plus grand que): Vérifie si une valeur est plus grande.
(Plus petit que): Vérifie si une valeur est plus petite.
(Plus grand ou égal a): Vérifie si une valeur est plus grande
égale a une autre.

(Plus petit ou égal a): Vérifie si une valeur est plus petite
égale a une autre.

isEqual = 5 == 5; // true

isDifferent

5 !=10; // true
isGreater = 10 > 5; // true

isLower = 5 < 10; // true
isGreaterOrEqual = 10 >= 10; // true

isLowerOrEqual = 20 <= 19; // false

Opérateurs Logiques : Triplet d’'opérateurs (opérateur) permettant de
construire des expressions logiques, basées sur les tables de

vérités

AND (ET), OR (OU) et NOT (NON).

e && (ET): Renvoie true si les deux opérandes sont vraies.

o ||

(0U) : Renvoie true si au moins une des opérandes est vraie.

e ! (NON): Inverse la valeur booléenne.
int a = 5;
int b = 10;
boolean conditionAndl = (a > 5) & (b == 10); // false
boolean conditionAnd2 = (a > 1) & (b == 10); // true
boolean conditionOrl = (a > 5) || (b == 10); // true
boolean conditionOr2 = (a > 1) || (b == 10); // true
boolean conditionNotl = !(a == 5); // false
boolean conditionNot2 = !(b > 20); // true

25

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

6. Affirmations (Assertions)

assert : Instruction vérifiant qu’'une expression booléenne soit
vraie (true) et lance une AssertionError si ce n’est pas le cas.

Particulierement utile pour les tests unitaires. Requiert 1’activation

des assertions lors du démarrage du programme pour que 1’instruction
assert soit bien considérée et puisse renvoyer une erreur.

int result = 2 + 3;

// Assert (affirme) que lLe résultat attendu de 2 + 3 est 5
assert result == : "Doit étre égal a 5";

System.out.println("Le test a réussi.");

// Résultat (affichage) dans La console
Le test a réussi.

AssertionError : Erreur qui se produit lorsque le résultat d’une
“vérification d'affirmation” (assert) est faux (false).

Une assertion est une affirmation que le développeur suppose étre
vraie lors de 1'exécution d’un code. Une assertion échoue lorsqu’une
condition supposée vraie se révéle fausse dans le programme, langant
alors une AssertionError signalant au développeur le comportement
anormal rencontré.

int result = 10 + 10;

// Assert (affirme) que le résultat attendu de 10 + 10 est 5
assert result == : "Doit étre égal a 5";

System.out.println("Le test a réussi.");
// Résultat (affichage) dans La console

Exception in thread "main" java.lang.AssertionError: Doit étre égal a 5
at TestAssertion.main(TestAssertion.java:6)

26

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

7. Structures Conditionnelles (Conditional Structures)

Condition : Bloc de code exécuté si, et seulement si, 1l'expression
booléenne évaluée renvoie vrai (true). Plus globalement, une
condition est une vérification qui renvoie un résultat binaire,
c’est-a-dire soit vrai (true), soit faux (false).

if : Mot-clé utilisé pour déclarer une condition et dont le résultat
déterminera 1’'exécution de son bloc de code associé.

Requiert une valeur de type boolean qui peut provenir d’une variable,
d’une expression booléenne ou d’'un retour de méthode.

int age = 25;

if (age >= 18) {
System.out.println("Vous étes majeur en France.");

// Résultat (affichage) dans La console
Vous étes majeur en France.

else : Mot-clé optionnel qui suit le bloc de code d'un if ou d’'un
else if et qui est exécuté si la ou les condition(s) précédente(s)
sont fausses (false). Peut se lire « sinon » et sert de comportement
par défaut lorsque les conditions précédentes n’ont pas été remplies

e Si (if) le restaurant est ouvert, on y va ce soir.
e Sinon (else), on se fait a manger.

int age = 15;

if (age >= 18) {
System.out.println("Vous étes majeur en France.");

}
else {

System.out.println("Vous étes mineur en France.");

// Résultat (affichage) dans La console
Vous étes mineur en France.

27

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

else if : Mot-clé optionnel qui permet d’écrire une condition
alternative a un if et suivant le bloc de code de ce dernier.

e Si (if) le restaurant est ouvert, on y va ce soir.
e Sinon si (else if) ils peuvent livrer, on commande.
e Sinon (else), on se fait a manger.

int age = 17;

if (age >= 18) {
System.out.println("Vous étes majeur en France.");

}
else if (age == 17) {
System.out.println("Vous étes presque majeur en France.");

}

else {
System.out.println("Vous étes mineur en France.");

// Résultat (affichage) dans La console
Vous étes presque majeur en France.

28

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

switch : Condition multiple sur une valeur, a la syntaxe (écriture)

différente mais conservant la logique d’une condition standard (if).

Equivalent & un if, else if, .., else if, else mais en plus optimisé.

case : Définit le code a exécuter si la valeur évaluée dans un

switch correspond (est égale). Equivalent au else if d’une condition.

default : Définit le code a exécuter si aucun case ne correspond a

la valeur évaluée dans un switch. Equivalent au else d’une condition.

char note = 'A’;

switch (note) {

case 'A':
System.out.println("Excellent !");
break;

case 'B':
System.out.println("Bien !");
break;

case 'C':
System.out.println("Correct.");
break;

case 'D':
System.out.println("Passable.");
break;

case 'E':
System.out.println("Mauvais.");
break;

default:
System.out.println("Note non reconnue.");

// Résultat (affichage) dans La console
Excellent !

29

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

yield : Instruction permettant de retourner une valeur depuis une
expression switch. Equivalent du return pour une méthode, permettant
ainsi de récupérer un résultat dans une variable.

char direction = 'N';

String cardinalPoint = switch (direction) {
case 'N':
yield "Nord";
case 'S':
yield "Sud";
case 'E':
yield "Est";
case '0':
yield "Ouest";
default:
yield "Direction inconnue";

}s

System.out.println("La direction est : + cardinalPoint);

// Résultat (affichage) dans La console
La direction est : Nord

8. Boucles et Itérations (Loops and Iterations)

Boucle : Bloc de code exécuté autant de fois (itération) que
1'expression booléenne évaluée sera vraie (true).

Mécanisme de programmation qui permet une forme de “raisonnement”
(entre gros guillemets) de nos machines grace a des vérifications en
continu offrant la possibilité de réagir a des changements de données.

Itération : Résultat de 1’'action d’'itérer, a savoir le fait de
répéter un comportement ou une logique.

Une boucle itere tant que sa condition ne renvoie pas faux (false),
autrement dit, elle répéte 1'’exécution de son bloc de code tant que la
condition renvoie vrai (true).

30

https://www.jiraws.com
https://www.jiraws.com

Y

Core

Master Guide

while : Boucle pouvant étre lue “tant que” et qui continue de
s’'exécuter aussi longtemps que sa condition renverra vrai (true).

C’est une forme de boucle trés utile lorsque 1’évolution de la
condition posséde une part d’inconnu. I1 faudra alors que son bloc de
code, ou autre code extérieur a cette derniére, modifie les facteurs
de sa condition pour qu’elle renvoie faux (false), tét ou tard.

int age = 10;

// Tant que la valeur de age est strictement inférieure a 18
while (age < 18) {

System.out.println("Vous n'étes pas encore majeur (" + age + ")");

/**
* Incrémentation de age a chaque exécution du bloc de code
* permettant ainsi d’atteindre petit a petit la valeur 18.
*/

age++;

System.out.println("Vous étes finalement majeur ! (" + age + ")");

// Résultat (affichage) dans La console
Vous n'étes pas encore majeur (10)
Vous n'étes pas encore majeur (11)
Vous n'étes pas encore majeur (12)
Vous n'étes pas encore majeur (13)
Vous n'étes pas encore majeur (14)
Vous n'étes pas encore majeur (15)
Vous n'étes pas encore majeur (16)
Vous n'étes pas encore majeur (17)
Vous étes finalement majeur ! (18)

31

https://www.jiraws.com
https://www.jiraws.com

Core 32

Master Guide

do : Extension d’'une boucle while permettant d’'exécuter une fois le
bloc de code associé a cette derniére avant de commencer son travail
d’'itération en considérant sa condition.

Particulierement utile lorsqu’on est certain d’effectuer une action au
moins une fois, et potentiellement plusieurs fois selon la condition
de la boucle.

Exemple : Demander 1’dge d’un utilisateur (do), et tant que (while) la
valeur n’est pas conforme (entre 0 et 130 ans par exemple), la boucle
redemandera a 1’utilisateur d’entrer une valeur jusqu’'a ce qu’elle
soit valide (et donc que la condition renvoie faux (false)).

Scanner scanner = new Scanner(System.in);
int age;

do {
System.out.print("Entrez votre age (@ - 130 ans) : ");

// Cette instruction attend que L’utilisateur écrive dans lLa console

/**
* lére exécution (do) : on suppose que L’utilisateur entre 200
* 2éme exécution (while) : on suppose que L’utilisateur entre 25
*/

age = scanner.nextInt();

if (age < @ || age > 130) {
System.out.print("Age invalide : " + age + " ans.");

} while (age < @ || age > 130);

System.out.println("Age valide : + age + " ans.");

// Résultat (affichage) dans La console
Entrez votre age (@ - 130 ans) : 200
Age invalide : 200 ans.

Entrez votre age (0 - 130 ans) : 25

Age valide : 25 ans.

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

for : Boucle pouvant étre lue “pour chaque”, avec une valeur de
départ (initialisation), une condition d’'arrét et une opération de
post-exécution permettant d’atteindre la condition d’'arrét.

C’est la forme de boucle la plus utilisée, offrant un contréle précis
sur le déroulement des itérations (itération), du début a la fin.

// Pour chaque valeur de 1 jusqu'a ce que 1 soit supérieur a 10.

for (int i = 1; i <= 10; i++) {
System.out.println(i);

// Résultat (affichage) dans La console

O 00 N OVl B WIN B

=
(W)

for-each : Boucle permettant d’'itérer (parcourir) les éléments d’'une
liste (tableau ou collection) un par un.

Elle utilise le méme mot-clé que la boucle for.

Elle simplifie 1’itération sur une suite d’éléments, en évitant
d’avoir a gérer les index manuellement comme avec une boucle for.

// Déclaration et instanciation d’une liste ["Java”, "C", "Python"]
List<String> namelList = List.of("Java", "C", "Python");

for (String name : namelList) {
System.out.println(name);

// Résultat (affichage) dans La console
"Java"

nen

"Python"

33

https://www.jiraws.com
https://www.jiraws.com

Core 34

Master Guide

break : Instruction permettant d’interrompre volontairement
1’exécution d’une boucle ou d'un switch.

Les itérations qui auraient dd étre exécutées sont alors annulées.

Trés utile lorsqu’on a trouvé le résultat recherché et que poursuivre
1’exécution de la boucle est alors devenu inutile.

// Boucle qui recherche Le premier nombre divisible par 5
for (int i = 1; i <= 10; i++) {

if (i1 %5 ==0) {

System.out.println("Premier nombre divisible par 5 : + 1i);
System.out.println("Interruption de la boucle avec break");

break; // Sort de La boucle (annule les prochaines itérations)

}
else {

System.out.println("Non divisible par 5 : " + 1i);
}

System.out.println("Message qui s’affiche aprés la boucle");

// Résultat (affichage) dans La console
Non divisible par 5 : 1

Non divisible par 5 : 2

Non divisible par 5 : 3

Non divisible par 5 : 4

Premier nombre divisible par 5 : 5
Interruption de la boucle avec break
Message qui s’affiche aprés la boucle

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

continue : Instruction permettant de sauter (ignorer) 1l’exécution du
bloc de code d’une boucle pour passer a l'itération suivante.

Trés utile lorsqu’on veut ignorer un ou plusieurs cas spécifiques.

// Boucle affichant des nombres excepté ceux qui sont divisibles par 5
for (int i = 1; i <= 10; i++) {

if (1 %5 == 0) {

System.out.println("Ignoré car divisible par 5 : + 1i);

continue; // Saute a la prochaine itération de la boucle

System.out.println(i);

// Résultat (affichage) dans La console
1

2

3

4

Ignoré car divisible par 5 : 5
6

7

8

9

Ignoré car divisible par 5 : 10

35

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

9. Imports et Paquets (Imports and Packages)

import : Permet d’'intégrer le code d’'un autre fichier du projet pour
pouvoir l’'utiliser. C’'est une sorte de “copier-coller” du contenu du
ou des fichiers cibles, ne tenant que sur une seule ligne.

Pour utiliser les éléments fournis par le JDK, il faut importer leurs
fichiers sources avant de pouvoir utiliser leurs fonctionnalités.

Pour utiliser 1’'interface List<E> ou Stream<E>, vous devez importer au
préalable leur code source grace a import.

import java.util.List;
import java.util.stream.Stream;

package : Peut étre vu comme un “dossier” en langage Java, contenant
les différents fichiers Java (classe, interface, enum, etc.) d’une
partie d'un projet. Un projet contient plusieurs packages, qui
doivent former une arborescence logique et pertinente.

Un package nommé “voiture” ne devrait contenir que le code en lien
direct avec la notion de voiture relative au projet.

Le mot-clé package et sa valeur (nom du package) sont positionnés a la
premiere ligne d’un fichier Java pour indiquer son appartenance.

package com.jiraws.supercarproject.voiture;

36

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Programmation Orientée Objet - POO @&
[Object Oriented Programming - OOP]

La Programmation Orientée Objet (P0O0) est wun paradigme de
programmation dans lequel on va chercher a créer et a manipuler des
“objets” pour les faire interagir entre eux. Ce paradigme vise a
structurer le code de maniére a faciliter 1le développement, la
maintenance et la réutilisation des logiciels.

Le langage Java est principalement connu pour son appartenance a la
famille des langages orientés objet, alors que ce n’'est pourtant pas
le seul paradigme sur lequel repose ce dernier. En effet, Java
intégre également des aspects de la Programmation Impérative, qui
inclut les fondamentaux communs a de nombreux langages, tels que les
notions de variable, fonction, condition et boucle.

La notion d’'objet n’'’est en fait qu’'une approche structurante de la
Programmation Impérative. Elle repose sur 1les mémes principes
fondamentaux, mais tend a les “positionner différemment” dans un
programme afin d'en améliorer la qualité et la gestion.

La Programmation Orientée Objet permet donc de modéliser des
concepts du monde réel sous la forme d’'objets programmatiques,
rendant le code plus intuitif et aligné sur 1la fagon dont les
humains (et donc, les développeurs) pergoivent le monde.

C’est le paradigme de programmation qui, depuis plus de 10 ans, est le
plus prédominant dans le domaine du développement informatique.

On le retrouve dans les langages les plus populaires, dont Java, mais
également C++, Python, JavaScript, PHP, C# ou encore Kotlin.

37

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

10. Les Quatre Piliers de la P00 (The Four Pillars of OOP)

La Programmation Orientée Objet (POO) repose sur quatre grands
principes: Encapsulation, Abstraction, Héritage et Polymorphisme.

Ils nécessitent une certaine maitrise de la programmation pour étre
compris et appliqués dans les reégles de 1l'art.

Vous trouverez ci-dessous une définition succincte pour chacun d’entre
eux, que votre expérience viendra consolider avec le temps.

Encapsulation : Mécanisme de limitation d’acces (en lecture et en
écriture) aux membres (membre) d’une classe en utilisant la
visibilité des éléments pour éviter les erreurs de manipulation.

Ce concept est essentiel a la P00, car il contribue a la sécurité, a
la modularité et a la maintenabilité du code. Dans des cas
d’utilisation plus poussés de 1’Encapsulation, cette derniére peut
également étre un moyen d’abstraction, en cachant certains détails et
en exposant seulement ce qui est nécessaire.

En pratique, bien que le principe d’Encapsulation soit relativement
simple a mettre en place, 1l reste souvent 1incompris par les
débutants. I1 fait partie, avec le Polymorphisme, des principes de la
POO les plus compliqués a concevoir pour les développeurs.

Note : Pas d'inquiétude a avoir si ce principe vous pose probléeme. Il
est primordial pour respecter les fondamentaux de la P00, mais n’aura
que peu d’impact sur votre apprentissage général de la programmation.

Abstraction : Conception visant a repousser 1l’'implémentation des
détails dans les classes (classe) qui seront réellement utilisées.

Dans une hiérarchie de classes, souvent représentée sous forme de
pyramide, on essaiera toujours de faire en sorte que les niveaux
supérieurs n’aient pour réle que de “structurer” en utilisant des
éléments abstraits (abstract) tels que les classes abstraites ou les
interfaces. Les niveaux inférieurs, eux, devront implémenter le code
(les détails) de cette structure qui sera véritablement utilisé dans
un programme (on parle alors de classe “concréte”).

Un bon exemple est la classe reine Object : son influence est
omniprésente en Java car toutes les classes héritent d’une maniére ou
d’une autre de cette derniéere, mais son utilisation directe est rare.

38

https://www.jiraws.com
https://www.jiraws.com

< 5 Core

<= Master Guide

Héritage : Capacité d'un élément (classe ou interface) a transmettre
ses membres (membre) a d’autres éléments, permettant ainsi la
réutilisation et 1'extension du code.

Si on souhaite représenter des voitures et des motos dans notre
programme, il y a fort a parier que leurs classes auront des points
communs, comme le fait d’avoir une marque, un nom de modéle, une
couleur, ou encore un nombre de roues.

Sans 1’'héritage, ces classes auront des lignes de code explicitement
similaires, a tel point que ces similarités pourront étre
copiées-collées d’'une classe a 1'autre. En cas de modification, il
faudra alors répercuter les changements sur les deux classes, ou plus,
si d’autres ont été ajoutées entre-temps.

Avec 1’'héritage, une classe générale regroupant les similarités (et
qu’on pourra appeler “Véhicule”) sera héritée par les classes plus
spécifiques (Voiture et Moto). Ainsi, les éléments (membres) de la
classe “mére” Véhicule seront automatiquement transférés dans les
classes “filles” Voiture et Moto. Toutes modifications (ajouts /
suppressions) seront également et automatiquement transférées aux
classes filles.

Polymorphisme : Concept permettant a des éléments (objet) d’une méme
nature (classe) de prendre plusieurs formes et d’exécuter une méme
action (méthode) de maniére différente.

Les voitures thermiques (& essence) et les voitures électriques sont
deux types de voitures qui partagent énormément de similarités et ont
un but commun, mais qu’on ne considére pas comme étant de méme nature
a cause de leurs différences fondamentales de motorisation.

Elles possédent pourtant les mémes fonctionnalités comme démarrer le
moteur et accélérer, mais leur réalisation technique est totalement
différente. Un moteur thermique injecte de 1’essence pour provoquer
une explosion, générant ainsi de la puissance transmise aux roues,
tandis qu’un moteur électrique utilise le courant alternatif de
l'électricité et 1’'électromagnétisme pour générer de la puissance.

En cela, on peut dire que les deux “véhicules” ont les mémes
comportements (méthode) de base, mais des exécutions (implémentation)
différentes, ce qui reléve du polymorphisme : un type d’objet
similaire, répondant aux mémes besoins, mais différemment.

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

11. Objets (Objects)

Objet : Instance composée d’'attribut(s) et/ou de méthode(s), générée
a partir d'une classe. On construit un objet a partir d’un modéle
d’objet (un plan de conception), a savoir une classe en Java.

Instance : Exemplaire d’objet créé a partir d’'une classe, aussi
appelé une instance de cette classe. Une instance, dans le contexte
de la technologie et de 1'informatique, se référe a une unique
occurrence d'une classe.

this : Mot-clé permettant de faire référence a 1l'instance (objet)
courante de la classe. Il permet de cibler un membre de 1’'instance.

Si on considére votre corps comme une instance (un exemplaire unique)
de la classe “Humain”, alors “this.prenom” référera a votre prénom.

Une autre personne pourra également utiliser “this.prenom” pour faire
référence a son propre prénom.

Deux personnes possédant le méme prénom restent deux instances
(exemplaires) bien distinctes. L’instruction “this.prenom” est
similaire, mais elle ne fait pas référence a la méme instance.

public class Voiture {

private String marque;
private String modele;

/**
* Le constructeur de lLa classe Voiture va créer une instance
(donc un exemplaire unique de cette classe, un objet)
et va cibler les deux attributs de cette instance grdce a "this"

L’utilisation du mot-clé "this" permet de distinguer les éléments
* "this.marque" référe a la variable d’instance
* "marque" référe au paramétre du constructeur

* X X X % ¥

*/
public Voiture(String marque, String modele) {
this.marque = marque;
this.modele modele;

40

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

super : Mot-clé permettant de faire référence a un membre du parent
(classe mére) direct d'un enfant (classe fille).

Si une classe mére déclare un attribut x alors sa classe fille pourra
utiliser 1'instruction “super.x” pour y accéder, méme si cette
derniére posséde également un attribut du méme nom.

Le mot-clé super est souvent utilisé dans les constructeurs pour faire
appel au constructeur de la classe mére et ainsi éviter de réécrire
deux fois le méme code.

public class Parent {

/**
* Constructeur de la classe Parent
*/
public Parent() {
System.out.println("Constructeur de la classe Parent");

public class Enfant extends Parent {

/**
* Constructeur de la classe Enfant
*/

public Enfant() {

super(); // Appel du constructeur de lLa classe Parent
System.out.println("Constructeur de la classe Enfant");

// Entrée de programme exécutable
public static void main(String[] args) {
Enfant enfant = new Enfant();

// Résultat (affichage) dans La console
Constructeur de la classe Parent
Constructeur de la classe Enfant

41

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

instanceof : Opérateur spécial permettant de vérifier si un objet
est une instance d'une classe spécifique, d’'une classe mere
(héritage) ou d’une classe implémentant une interface.

Renvoie vrai (true) si 1’'instance est du type mentionné.
Particulierement utile lorsqu’on fait usage de 1’inférence de type.

Permet également de vérifier qu’un objet appartient a un type, avant
de réaliser une conversion (Casting) qui pourrait entrainer une
Exception dans le cas contraire.

var voiture = ... ; // On suppose qu'un objet est affecté
if (voiture instanceof Voiture) {
System.out.println("Instance de la classe Voiture détectée !");

// Conversion (casting) de L'objet en type Voiture
Voiture voitureConvertie = (Voiture) voiture;

System.out.println("La conversion a été effectuée avec succes.");

}
else {

System.out.println("Il ne s'agit pas d'une Voiture.");
}

// Résultat (affichage) dans La console
Instance de la classe Voiture détectée !
La conversion a été effectuée avec succes.

42

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

12. Constructeurs (Constructors)

Instanciation : Processus de création d'un objet grace a un
constructeur. Lors de 1'instanciation d’'un objet, Java réserve un
emplacement dans la mémoire vive pour y stocker ses informations.

Constructeur : Méthode spécifique, portant le nom de sa classe, sans
type de retour et appelée pour la création d'une instance.

Si aucun constructeur n’est implémenté dans une classe, Java en
fournit automatiquement un, sans paramétre et affectant des valeurs
par défauts aux attributs de 1’instance créée.

/**
* Ci-dessous, le code d’une classe nommée Voiture sans aucun attribut
* et possédant un constructeur permettant d’instancier des objets
*/

public class Voiture {

/**
* S1 ce constructeur n’avait pas eété implémenté, Java en aurait
* agutomatiquement fourni un similaire, par défaut.
*/

public Voiture() { }

new : Opérateur utilisé avec le constructeur d’'une classe pour
déclencher le processus d’'instanciation, créant ainsi un objet.

/**
* Cette 1instruction va demander a Java de créer un espace dans La
* mémoire afin de stocker L’objet créé. La référence de cet

* espace mémoire sera ensuite affectée a La variable "obj
*/
Object obj = new Object();

43

https://www.jiraws.com
https://www.jiraws.com

mw

Core

Master Guide

Object : Classe Reine de la Programmation Orientée Objet en Java.

Toutes les classes héritent (héritage) de la classe Object en Java,
méme si ce n’'est pas directement visible dans le code.

Elle fournit des méthodes (méthode) de base comme equals(), hashcode()
ou encore toString(), qui seront détaillées dans la suite de ce guide.

/**
* Méme si L’héritage n’est pas visible avec le mot-clé extends Object
* La classe Voiture hérite bel et bien de la classe Reine Object.
*/

public class Voiture {

Object.equals(Object obj) : Détermine 1'égalité entre deux objets.
Renvoie vrai (true) si les objets sont égaux, faux (false) sinon.
Par défaut, cette méthode compare les références mémoires des deux
objets pour vérifier qu’il s'agit bien du méme élément (dans le méme
espace mémoire de la JVM).

Elle est souvent redéfinie (Override) dans les classes (classe) pour

comparer les valeurs de leurs membres (membre) et ainsi faire une
comparaison fonctionnelle plutét que technique.

Voiture voiturel = new Voiture("Ferrari", "F480");
Voiture voiture2 = new Voiture("Lamborghini", "Urus");

boolean egalite = voiturel.equals(voiture2); // false

Object.hashCode() : Retourne le code hash (Hachage) de 1l’'objet.

Utilisé par les éléments de type Collection<E> basés sur le hash,
comme HashSet<E>, permettant un accés aux éléments plus efficace.

Voiture voiture = new Voiture("Ferrari", "F480");

System.out.println(voiture.hashCode());

// Résultat (affichage) dans La console
1791741888

ﬂ\
2

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Object.toString() : Retourne une représentation de 1l'objet sous la
forme d’une chaine de caractéres (String).

L’implémentation par défaut renvoie la forme: [nom_classe]@[hashCode].

Elle est souvent redéfinie (Override) par les classes (classe) pour
avoir une représentation plus lisible des éléments dans un programme.

Voiture voiture = new Voiture("Ferrari", "F480");

System.out.println(voiture.toString());

// Résultat (affichage) dans La console
com.jiraws.supercarproject.voiture.Voiture@6acbcfco

Object.getClass() : Retourne la classe de 1l’'objet.

Permet de connaitre précisément le type de 1'objet concerné, en
comparaison de 1’'opérateur instanceof qui peut renvoyer vrai (true)
s'il y a un lien d’héritage entre 1’'objet et la classe indiquée.

public class Voiture extends Vehicule {
public static void main(String[] args){
Voiture voiture = new Voiture();
// La classe Voiture hérite de Vehicule, la condition est valide
if (voiture instanceof Vehicule) {

System.out.println("Instance de Véhicule détectée !");
System.out.println(voiture.getClass());

}
else {

System.out.println("I1l ne s'agit pas d'un Véhicule.");
}

// Résultat (affichage) dans La console
Instance de Véhicule détectée !
class com.jiraws.supercarproject.voiture.Voiture

https://www.jiraws.com
https://www.jiraws.com

(P Core

= Master Guide

13. Classes (Classes)

class (Classe) : Plan de conception permettant de définir la
structure (membre) qu’auront les objets (objet) qu’elle créera.

La représentation d’une voiture en objet (P00) peut étre la suivante:

e Attributs (données) : Elle posséde un nom de modele, une marque,
une couleur, ou encore un nombre de roues prédéterminé.

e Méthodes (comportements) : Elle a la capacité d’avancer, de
freiner ou encore d’activer la climatisation.

public class Voiture {

/**
* Attributs (Variables d’instance)
*/

public String modele;
public String marque;
public Couleur couleur;
public int nombreRoues;

/**
* Méthodes (Comportements)
*/

public void avancer() {

// Code pour faire avancer Lla voiture

public void freiner() {
// Code pour faire freiner La voiture

public void activerClimatisation() {
// Code pour activer Lla climatisation

public void desactiverClimatisation() {
// Code pour activer la climatisation

46

https://www.jiraws.com
https://www.jiraws.com

(P Core

= Master Guide

Définition : Réfeére a la spécification compléte d'un élément.
e la définition d’une classe inclut sa déclaration ainsi que
1'implémentation de son corps : attribut(s), méthode(s), etc.
e [a définition d’une méthode inclut son nom, son bloc de code,
ses paramétres (parametre), ainsi que son type de retour.
e La définition d’une variable inclut sa déclaration (type, nom)
et éventuellement son initialisation.

Membre : Terme référant a une composante de classe. Il peut cibler
une variable (attribut), une fonction (méthode), une classe
imbriquée ou encore une interface implémentée.

L’attribut “marque” de la classe Voiture, ou encore sa méthode lui
permettant de démarrer le moteur, font partie de ses membres.

Attribut : Variable appartenant a une classe (static) ou a une
instance (objet) créée a partir de cette derniere.

C’est la dénomination spécifique d’une variable en raison de son
appartenance a une classe ou a un objet. On peut voir ce terme comme
un synonyme de “variable”, mais son usage dépend du contexte (la ou se
trouve la variable, dans une classe, ou pas).

Méthode : Fonction définie dans une classe ou dans une interface.

Aussi appelée “comportement” d’un objet. Comme pour le terme attribut,
le terme “méthode” est un synonyme de “fonction” qui dépend du
contexte (la ou se trouve la fonction).

Override (Redéfinition) : Réécriture du corps d’une méthode pour
remplacer celui regu via 1l'héritage d’une classe ou d’'une interface.

public class Voiture {

private String marque;
private String modele;

// Réécriture d’un code plus adapté de La méthode Object.toString()
@0Override
public String toString() {

return "Modele " + this.modele + " de la marque

+ this.marque;

47

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Overload (Surcharge) : Implémentation multiple d’une méthode
possédant le méme nom mais ayant un type de retour et/ou des
paramétres (parametre) différents.

Le nom des méthodes est important car il permet de structurer
logiquement le code de notre application.

La surcharge est un bon exemple mettant en évidence 1’importance de
bien nommer les éléments:

e Cas 1 (Bonne pratique) : On surcharge correctement une méthode
pour additionner des nombres, et ainsi, on facilite le travail
des autres développeurs lorsqu’ils liront ce code.

// Méthode pour additionner deux entiers
public int add(int a, int b) {
return a + b;

// Méthode surchargée pour additionner trois entiers
public int add(int a, int b, int c) {
return a + b + c;

e (Cas 2 (Mauvaise pratique) : On ne surcharge pas la méthode, en
préférant plutét la création d’une autre distincte, alors
qu’elles ont un objectif et un sens trés similaires.

// Méthode pour additionner deux entiers
public int addition(int a, int b) {
return a + b;

// Méthode pour additionner trois entiers
public int additionDeTroisNombres(int a, int b, int c) {
return a + b + c;

Classe Utilitaire : Une classe déclarant un ensemble de méthodes
(méthode) statiques (static) offrant des fonctionnalités communes ou
réutilisables, sans nécessiter l'instanciation d'objets.

On peut voir une classe utilitaire comme une bibliotheque.

48

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

14. Héritage (Inheritance)

extends (Extension) : Mot-clé permettant de lier par 1'héritage une
classe fille a sa classe mére.

Les membres (membre) de la classe mére sont alors transmis a la
structure de la classe fille.

En Java, une classe ne peut hériter que d’une seule autre classe.

public class Voiture extends Vehicule { ... }

abstract (Abstraite) : Mot-clé permettant de rendre une classe ou
une méthode abstraite.

e Une classe abstraite est une classe qui perd la capacité de
créer (instanciation) des objets grdce a un constructeur.

Elle conserve néanmoins son role de modele d’objet.

public abstract class Vehicule { ... }

e Une méthode abstraite est une méthode déclarée, mais sans corps
de méthode (bloc de code) qui devra étre redéfini (Override) par
les classes filles.

Une classe contenant une méthode abstraite doit également étre
déclarée comme abstraite.

public abstract class Vehicule {

Chaque type de véhicule (voiture, moto, avion, bateau) démarre
d’une facon bien spécifique.

pour que les futures classes filles (Voiture, Moto, Avion, etc.)
soient contraintes de redéfinir lLeurs codes en fonction de
Leurs spécificités de fonctionnement.
*/
public abstract void demarrer();

*
*
*
* Il est donc cohérent de rendre lLa méthode demarrer() abstraite
*
*
*

49

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

sealed (Scellée) : Permet de rendre une classe ou une interface
“scellée”, c’'est a dire qu’elle ne peut étre héritée (héritage) que
par les éléments définis a 1'avance avec le mot-clé permits.

C’est une approche visant a mieux contréler 1’héritage dans un projet,
offrant ainsi aux développeurs plus de sécurité quant a 1'utilisation
d’une classe ou d’une interface.

permits : Permet de spécifier explicitement les classes (classe) et
les interfaces (interface) qui peuvent étendre un type sealed.

Les classes qui hériteront devront étre soit final soit non-sealed.

public sealed class Vehicule permits Voiture, Camion { ... }

/**
* La classe Voiture n’aura (a priori) pas de classe fille dans Le
* projet, on la rend donc non-héritable grdce au modificateur final

*/

final class Voiture extends Vehicule { ... }

non-sealed : Permet a une classe ou a une interface héritant
(héritage) un type sealed, de devenir un type héritable a nouveau.

Offre une flexibilité d'héritage au sein d'une hiérarchie scellée,
permettant a certaines branches de cette hiérarchie de rester ouvertes
a 1'extension. Son utilisation doit étre faite avec parcimonie, car
elle va a 1’encontre du principe de sceller des éléments.

public sealed class Vehicule permits Camion { ... }

/**
* La classe Camion possédera au moins une classe fille dans Lle
* projet, on la rend donc a nouveau héritable grdce a non-sealed

*/
non-sealed class Camion extends Vehicule { ... }

/**
* La classe CamionElectrique hérite sans contrainte de la classe Camion
*/

public class CamionElectrique extends Camion { ... }

50

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

15. Interface (Interface)

interface (Interface) : Une “sorte” de classe ne pouvant contenir
aucun attribut, ne pouvant pas créer d’'objet, et ne déclarant que
des méthodes abstraites (abstract) qui seront redéfinies (Override)
par les classes qui les implémenteront (implements).

On considére plus généralement une interface comme un “contrat”
d’'utilisation : cette derniére déclare des méthodes abstraites,
forgcant ainsi les classes qui les implémenteront a les redéfinir avec
le code correspondant a leurs spécificités.

Une interface va permettre de regrouper les méthodes propres a un
comportement, mais qui n’'a pas de lien direct avec la représentation
qu’on se fait d’un objet (voir 1’exemple ci-dessous).

Une voiture et une maison n’ont rien a voir conceptuellement
mais peuvent partager une fonctionnalite commune d’air climatisée.

Les deux classes Voiture et Maison partageront alors une interface
nommée “Climatiseur”, déclarant les méthodes nécessaires a ce besoin.
*/

public interface Climatiseur {

public void activerClimatisation();
public void desactiverClimatisation();
public void reglerTemperature(int temperature);

/**
* Une méthode pourra proposer un code par défaut, assurant ainsti
* que ce dernier soit utilisé automatiquement si la classe
* implémentant L’interface ne L’a pas redéfinit.
*/
public default void soufflerAir() {
// Code de L’implémentation par défaut

Une interface peut en étendre (héritage) une autre, comme une classe
peut le faire avec une autre classe.

public interface InterfaceA extends InterfaceB { ... }

51

https://www.jiraws.com
https://www.jiraws.com

<3 5 Core

Master Guide
<

implements : Mot-clé permettant a une classe d’'implémenter une
(ou plusieurs) interface(s).

Une classe déclarant 1’'implémentation d’une interface est alors
contrainte de redéfinir (Override) ses méthodes déclarées. Si elle ne
le fait pas (entiérement), une erreur de compilation aura lieu,
empéchant ainsi le programme de pouvoir démarrer.

Une classe abstraite (abstract) déclarant 1’'implémentation d’une
interface pourra s’abstenir de redéfinir (Override) les méthodes
importées, en laissant ce travail a ses classes filles.

Contrairement a 1’'héritage de classe qui est unique en Java, une
classe pourra implémenter plusieurs interfaces si nécessaire.

public interface Climatiseur {

public void activerClimatisation();
public void desactiverClimatisation();
public void reglerTemperature(int temperature);

public class Voiture implements Climatiseur {

@0Override
public void activerClimatisation() {
// Implémentation du code spécifique...

@0verride
public void desactiverClimatisation() {
// Implémentation du code spécifique...

@Override
public void reglerTemperature(int temperature) {
// Implémentation du code spécifique...

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

16. Enumérations (Enumerations)

enum (Enumération) : Type de classe spécifiquement congu pour
représenter une suite d’éléments fixes (constante).

Visuellement différente d’une classe standard, une énumération offre
néanmoins les mémes fonctionnalités a 1’exception de 1’'héritage.

Une enum ne peut pas utiliser 1’héritage, car en interne elle est
implicitement déclarée comme final et étend la classe java.lang.Enum
méme si ce n’'est pas visible dans le code (comme pour 1’héritage
universel de la classe Object).

Deux bons exemples d’application des énumérations sont les jours de la
semaine (de lundi & dimanche) et les directions cardinales (nord, sud,
est, ouest). Ce sont des “suites” (listes) d’éléments fixes, qui ne

vont a priori pas changer dans votre application une fois implémentés.

public enum PointCardinal {

/**
* Une suite de constantes ("NORD", "EST", "SUD", "OUEST")
* gvec un Libelle ("N", "E", "S", "0") pour chacune d’entre elles.
*/

NORD("N"),

EST("E"),

suD("s"),

OUEST("0");

// Attribut pour Lle Llibellé court ("N", "E", "S", "0")
private final String libelleCourt;

// Constructeur privé pour L 'énumération
PointCardinal(String libelle) {
this.libelleCourt = libelle;

// Méthode publique (Getter) pour accéder au Libellé court
public String getLibelleCourt() {
return libelleCourt;

53

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

17. Modificateurs (Modifiers)

Modificateur : Catégorie de mot-clés qui changent la signification
d'une définition de classe, d'interface, de méthode ou de variable.

Parmi les modificateurs, on retrouve abstract et final que nous avons
croisé précédemment dans ce guide, ou encore ceux permettant de
modifier la visibilité: public, private, protected.

Le mot-clé static est un bon exemple de modificateur, car son simple
ajout change totalement 1’appartenance d’un attribut (ou d’une
méthode) a une classe ou a une instance de cette derniére.

public class Voiture {
public static int nombrelInstanceVoiture; // Attribut de classe

public int kilometrage; // Attribut d’instance

Visibilité : Mécanisme déterminant 1'accessibilité d’'un élément
(classe, interface, attribut ou méthode) au sein d'un programme.

Elle joue un rdéle direct dans le principe d’'Encapsulation, car elle
permet de limiter 1l'accés en lecture et en écriture des éléments.

On change la visibilité d’un élément grace a 1’utilisation d’un
modificateur de visibilité comme public, private ou protected.

public (public) : L’élément est visible dans tout le projet.

Déconseillé par défaut pour certains éléments : un attribut doit
rester privé, et une méthode ne doit étre publique que s'il y a un
réel intérét a ce que son accés par 1l’'extérieur soit possible.

public class Voiture {

// Attribut public qui sera accessible de partout dans Lle projet
public int kilometrage;

54

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

private (privé) : L’élément n’est visible que par les autres membres
(membre) de sa classe ou de son interface.

Equivalent du “Secret Défense” : seuls les membres d’une méme unité ne
peuvent connaitre cet élément privé. Pour le reste du projet,
1’élément privé n’existe pas, il n’'est ni visible, ni accessible.

Dans le cas d’une interface, la méthode déclarée privée devra posséder
un corps (bloc de code) car elle ne sera pas transmise a la classe
implémentant 1’interface a cause de sa visibilité privée. Elle servira
alors de méthode interne, utilisable par les autres méthodes.

public class Voiture {

/**
* |?attribut (variable d’instance) "kilometrage" ne sera visible,
* et donc accessible et modifiable, que par les méthodes de
* Lla classe Voiture et sera inaccessible pour Le reste.
*/
private int kilometrage;

protected (protégé) : L’élément est visible par les membres (membre)
de sa classe et de ses classes filles (héritage), ainsi que par les
autres éléments présents dans le méme package.

On peut considérer cette visibilité comme un entre-deux de public et
private. Il est cependant non-applicable dans une interface.

package com.jiraws.supercarproject.voiture;
public class Voiture {

/**

*

L’attribut (variable d’instance) "kRilometrage" sera visible,

et donc accessible et modifiable, par lLes méthodes de

La classe Voiture, par les classes filles de lLa classe Voiture

* et par les éléments du package com.jiraws.supercarproject.voiture
*/

protected int kilometrage;

*

*

55

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

default (package-private) : L’élément est visible par les membres
(membre) de sa classe ou de son interface et par les éléments
présents dans le méme package.

C’est une visibilité automatiquement appliquée a un élément
lorsqu’aucun modificateur n’est défini par le développeur.

A 1’'instar de la visibilité protected, la visibilité par défaut
n’inclut pas 1'héritage, sauf si la classe fille concernée se trouve
dans le méme package que la classe déclarant 1’élément.

public class Voiture {

/**
* |’attribut (variable d’instance) "Rilometrage"” sera visible,
* et donc accessible et modifiable, par lLes méthodes de sa classe
* et par les éléments du package com.jiraws.supercarproject.voiture
*/

int kilometrage;

Getter (Accesseur) : Méthode permettant d’accéder (de lire) la
valeur d'un attribut privé (private) d'une classe.

Une méthode “getter” ne differe en rien techniquement d’une autre
méthode standard pour le langage Java, il ne s’agit que d’une bonne
pratique respectant le grand principe d’Encapsulation en POO.

Bien qu’une méthode Getter soit souvent du code boilerplate, elle

offre néanmoins la possibilité d’ajouter une implémentation spécifique

a 1’accés d’un attribut, comme par exemple en ne renvoyant qu’une
copie de la valeur de ce dernier, pour éviter une modification
involontaire en transmettant une référence.

public class Voiture {

// Invisible de lL’extérieur, mais accessible grdce a son Getter
private String marque;

public String getMarque() {
return this.marque;

56

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Setter (Mutateur) : Méthode permettant de modifier (d’écrire) la
valeur d’un attribut privé (private) d’une classe.

Une méthode “setter” ne différe en rien techniquement d’une autre
méthode standard pour le langage Java, il ne s’agit que d’une bonne
pratique respectant le grand principe d’Encapsulation en POO.

Méme si une méthode Setter est souvent du code boilerplate, elle offre
néanmoins la possibilité d’ajouter une implémentation spécifique a la
modification de la valeur d’un attribut, comme par exemple en
empéchant certains changements qui pourrait fausser une information.

public class Voiture {
private int kilometrage;

/**
* Un exemple de méthode Setter protégeant son attribut
* d’une mauvaise modification, ou du moins, d’une modification
* qui ne devrait pas avoir Llieu.
*/

public void setKilometrage(int nouveauKilometrage) {

// Le Rilométrage d’une voiture ne peut qu’augmenter
if(this.kilometrage < nouveauKilometrage) {

// La modification est ignorée au profit d’une alerte
System.out.println("Réduction du kilométrage interdite.");

}
else {

this.kilometrage = nouveauKilometrage;
}

57

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

static : Modificateur impliquant qu'un membre appartient a une
classe plutdét qu'a une instance.

Un attribut ou une méthode ayant le modificateur static seront
partagés par toutes les instances de leur classe, sans pour autant
leur appartenir directement.

On fait ainsi la distinction entre:
e Un attribut de classe et un attribut d’instance
e Une méthode de classe et une méthode d’instance

public class Voiture {

/**
* Variable de classe partagée par chaque future instance
*/

private static long nombreInstanceVoiture = 0;

/**
* Variables d'instance qui seront uniques et propres a chaque
* future instance créée
*/

private String marque;

private int kilometrage;

native : Modificateur impliquant qu'une méthode est implémentée en
code natif en dehors du programme Java.

C’est-a-dire du code écrit dans un autre langage de programmation
comme C ou C++. Souvent utilisé pour accéder a des bibliothéques
(bibliothéque) systéme ou a des fonctions spécifiques au matériel qui
ne sont pas disponibles en Java.

Note: Vous ne croiserez que (trés) rarement (voire jamais) ce
modificateur, mais il est quand méme bon de connaitre le grand concept
autour de ce dernier au cas ou cela arriverait.

58

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

18. Immutabilité (Immutability)

Immuable (Immutabilité) : Un objet est dit immuable lorsque son état
interne (valeurs de ses attributs (attribut)) ne peut pas étre
modifié aprés sa création (instanciation).

Un type primitif est par nature immuable: lorsqu’on modifie sa valeur,
en interne du langage Java il ne s’agit pas d’une modification de la
valeur en elle-méme, mais plutét de la création d’une nouvelle valeur
qui est affectée a la variable.

Un type référence n’est immuable que si son état (valeurs de ses
attributs) ne peut pas étre modifié aprés sa création, impliquant
donc que 1’ensemble de ses champs ait le modificateur final.

L’inverse de 1’'immutabilité est la mutabilité, a savoir le fait d’étre
mutable (et donc “changeable” / “modifiable”).

/**
* Cette implémentation de la classe Voiture permet de créer des
* objets immuables, car tous ses attributs sont déclarés finaux (final)
* et par conséquent ne pourront pas étre modifiés aprés
* Lla création d’une instance de la classe.
*/
public final class Voiture {

private final String marque;
private final String modele;

public Voiture(String marque, String modele) {
this.marque = marque;
this.modele = modele;

public final String getMarque() {
return this.marque;

public final String getModele() {
return this.modele;

59

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

final : Modificateur impliquant que 1'élément concerné ne puisse
plus étre modifié apres sa création.

/**

Pour un type primitif: sa valeur (primitive) ne pourra pas étre
changée aprés son initialisation.

Pour un type référence: sa valeur (référence mémoire) ne pourra

pas étre changée apres son instanciation, mais son état (valeurs

de ses attributs) peut 1’étre si ce dernier n’est pas immuable.
Pour une méthode: son corps ne pourra pas étre redéfini
(Override) par une classe qui en héritera, assurant ainsi un
comportement unique dans toute 1’arborescence (héritage).

Pour une classe: elle devient non héritable et ne peut donc pas
avoir de classe fille, elle est la derniére de sa lignée.

* La classe Voiture posséde Le modificateur final et ne pourra donc
* pas avoir de classe fille (extends Voiture)

*/

public final class Voiture {

/**
* Attribut primitif dont Lla valeur (primitive)
* ne peut pas étre changée
*/

private final int anneeFabrication;

/**
* Attribut référence dont La valeur (référence mémoire de L’objet)
* ne peut pas étre changée
*/

private final Moteur moteur;

public Voiture(int anneeFabrication, Moteur moteur) {
this.anneeFabrication = anneeFabrication;
this.moteur = moteur;

// Méthode ne pouvant étre redéfinie (Override)
public final String getMarque() {
return this.marque;

60

https://www.jiraws.com
https://www.jiraws.com

L —
C—

Core 61

Master Guide

record : Type de classe spécifiquement congu pour simplifier
1’implémentation d'objets immuables (Immutabilité) en générant
automatiquement le code de base (boilerplate) dans la classe.

Bien que le mot-clé class ne soit pas utilisé, le résultat final sera
bel et bien une classe immuable comme si vous 1’aviez fait vous-méme.

Un record va fournir, a la place du développeur, les implémentations
des méthodes de base comme le getter et le setter de chaque attribut
ainsi que equals(), hashCode(), et toString().

C’est une solution qui n’'a pour but que de simplifier 1’écriture du
code, comme par exemple avec 1’auto-boxing et 1’auto-unboxing.

public record Coordonnees(int x, int y) { }

/**
* Le (simple) code ci-dessus est équivalent au (long) code ci-dessous
*/

public class Coordonnees {

private final int x;
private final int y;

public Coordonnees(int x, int y) {
this.x = x;
this.y = y;

public int getX() { return this.x; }
public int getY() { return this.y; }

public int setX(int x) { this.x = x; }
public int setY(int y) { this.y =vy; }

@0verride
public boolean equals(Coordonnees c) { // Code du equals }

@Override
public int hashCode() { // Code du hashCode }

@Override
public String toString() { // Code du toString }

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

19. Types Enveloppes (Wrappers)

Wrapper (Enveloppe) : Classe contenant (enveloppant) un type
primitif et offrant diverses méthodes (méthode) propres a ce dernier
afin d’'améliorer sa manipulation.

Les types enveloppes consomment plus de mémoire que les types
primitifs. Il faut donc les utiliser seulement si le type primitif
concerné ne répond pas correctement a notre besoin.

Byte : Classe Enveloppe (Wrapper) du type primitif byte.

Byte distanceSalleDeSport = 2;

Short : Classe Enveloppe (Wrapper) du type primitif short.

Short rayonPlaneteTerre = 6371;

Integer : Classe Enveloppe (Wrapper) du type primitif int.

Integer distanceTerrelLune = 384400;

Long : Classe Enveloppe (Wrapper) du type primitif long.

Long distanceSoleilNeptune = 4500000000L ;

Float : Classe Enveloppe (Wrapper) du type primitif float.

Float tailleMoyenHumain = 1.75F;

Double : Classe Enveloppe (Wrapper) du type primitif double.

Double approximationPi = 3.141592653589793;

Character : Classe Enveloppe (Wrapper) du type primitif char.

Character note = 'A';

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Boolean : Classe Enveloppe (Wrapper) du type primitif boolean.

Boolean like = true;
Boolean dislike = false;

L’intérét du type enveloppe Boolean est important a retenir, car ce
dernier étant un objet (et donc un type référence), il peut étre
affecté a la valeur spéciale null, offrant ainsi des possibilités
ternaires (3) plutdét que binaires (2) :

e ['utilisateur a-t-il validé son adresse email ?

o true (vrai) : 1’adresse email a été validée.
o false (faux) : 1l'adresse email n’est pas encore validée.

o null (rien) : 1'utilisateur n’a pas fourni d’adresse email.

Auto-boxing : Processus automatique par lequel Java convertit un
type primitif en sa classe enveloppe (Wrapper) correspondante

lorsqu’un objet est requis mais qu’'une valeur primitive est fournie.

Fonctionnalité ajoutée au langage Java pour faciliter 1'écriture du
code. Il faut cependant garder en téte que ce processus de conversion
automatique est colteux en termes de performance.

Integer age

new Integer(25); // Approche dépréciée

Integer age

25; // Usage de L'auto-boxing (primitif -> enveloppe)

Auto-unboxing : Processus automatique inverse de 1’'auto-boxing par
lequel Java convertit un type enveloppe (Wrapper) en son type
primitif correspondant lorsqu’une valeur primitive est requise mais
qu’un objet est fourni.

Fonctionnalité ajoutée au langage Java pour faciliter 1'écriture du
code. Comme pour 1’auto-boxing, il faut garder en téte que ce
processus est colteux en termes de performance.

Integer ageEnveloppe = 25; // Auto-boxing (primitif -> wrapper)

int agePrimitif = ageEnveloppe; // Auto-unboxing (wrapper -> primitif)

63

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Casting (Conversion) : Conversion explicite d’un type vers un autre.

C’est une opération qui présente des risques et que les développeurs
doivent considérer avant de 1’'utiliser. L’'erreur la plus courante est
la perte d’une partie des informations, comme par exemple en
convertissant un float (nombre a virgule) en int (nombre entier), ce
qui entraine la perte des valeurs aprés la virgule (160.55 devient 180).

Pour un type primitif : on peut faire une conversion (casting) pour
éviter la perte de données lors d’une opération arithmétique.

/**
* On s’appréte a diviser Lla valeur des deux variables ci-dessous.
* Le résultat attendu de 5 / 2 est donc 2.5

*/
int a = 5;
int b = 2;

// Division sans faire explicitement Lla conversion du résultat
float ¢ = a / b;

// Division en faisant explicitement La conversion du résultat
float d = (float) a / b;

/**

La différence entre Lles deux résultats s’explique par L’ordre
d’exécution des instructions:

1. Si une conversion est demandée, Java convertit lLes opérandes
2. Java exécute L’opération arithmétique (a / b)

Sans cette étape de conversion (casting), Java va réaliser
L’opération arithmétique sur deux entiers (int) et par

conséquent va tronquer le résultat:

* 2.5 devient 2 (int) puis devient 2.0 pour matcher le type float

Avec cette étape de conversion (casting), Java va convertir

Les opérandes (en float) puis réaliser L’opération arithmétique

manipulant ainsi des types compatibles avec les nombres a virgule.
*/

System.out.println("Résultat sans conversion + C);

System.out.println("Résultat avec conversion : " + d);

¥ ¥ X X X X ¥ ¥ ¥ ¥ % X ¥

// Résultat (affichage) dans La console
Résultat sans conversion : 2.0
Résultat avec conversion : 2.5

https://www.jiraws.com
https://www.jiraws.com

<3 5 Core

Master Guide
<

Pour un type référence : on peut faire une conversion (casting) d’un
type vers un autre, si les deux éléments partagent une hiérarchie de
classe en commun. Requiert une vérification au préalable avec
1’opérateur instanceof pour s’assurer de la réussite de la conversion,
sans quoi une ClassCastException sera levée et arrétera le programme.

public class Animal {

public void manger() {
System.out.println("Cet animal mange.");

public class Chien extends Animal {

public void aboyer() {
System.out.println("Le chien aboie.");

public static void main(String[] args) {

// Instanciation d’un Chien dans une variable Animal
Animal animal = new Chien();

// La méthode manger() est accessible par le type Animal
animal.manger();

// La méthode aboyer() n’est pas accessible par Le type Animal
animal .aboyer(); // Erreur de compilation (lLigne a supprimer)

/**
* Vérification de L 'appartenance a une hiérarchie commune.
* La condition est valide car Chien extends Animal.
*/

if (animal instanceof Chien) {

// Conversion explicite du type Animal en type Chien
Chien chien = (Chien) animal;

// La méthode Chien.aboyer() est désormais accessible
chien.aboyer();

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

20. Manipulation de Texte (String)

String : Classe permettant de représenter et de manipuler du texte.

Techniquement appelées des “chaines de caractéres” en raison de leur
composition : des caractéres (char) les uns a la suite des autres.

Rappel important : En Java, la valeur d’une chaine de caractéres
(String) est entre “ “ (guillemets) et la valeur d’un caractére (char)
“ * (apostrophes).

"

est entre

/**
* Pour faciliter L’écriture du code en évitant d’avoir a faire appel
* systématiquement a un constructeur, le langage Java permet une
* instanciation simplifiée des chaines de caractéres (String)

*/
String nomFormation = "JavaCore";

/**
* On peut voir Lla valeur "JavaCore" comme un tableau d’éléments char
* *[’J') 'G', ,V') 'G', ’C’J ’O’J 'P’J 'e']
* Soit en valeurs décimales (table de caracteres Unicode)
* *x [74 , 97 , 118, 97 , 67 , 111, 114, 101]
*/

Concaténation : Action de concaténer, a savoir le fait de joindre
des chaines de caractéres (String) pour en former une nouvelle.

String nomFormation
String nomFormateur

"JavaCore";
"JirAWS";

// Concaténation des trois chaines de caractéres (String)

String concatenation = nomFormation + " par " + nomFormateur;

System.out.println(concatenation);

// Résultat (affichage) dans La console
JavaCore par JirAWS

66

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Regex (Expression Réguliére) : Technique (puissante) et flexible de
recherche et de manipulation de chaines de caractéres (String) basée
sur des motifs permettant de spécifier des regles d’'identification
des séquences de caracteres.

Attention : Les expressions réguliéres ont une complexité cognitive
trés élevée. Méme un développeur expérimenté aura besoin d’un temps
d’analyse pour bien appréhender une regex complexe.

// Adresse mail a veérifier
String email = "contact@jiraws.com";

/**
* Expression réguliére basique pour la vérification de mail.
* Elle correspond a un format d’adresse email basique : xxx@yyy.zzz
*/

String regex = "[\\W.-]+@\\w+\\.\\w+";

// Instanciation d’un compilateur de regex
Pattern pattern = Pattern.compile(regex);

/**
* Instanciation d’un matcheur (comparateur) qui fera la vérification
* entre La regex et L’adresse email fournies
*/

Matcher matcher = pattern.matcher(email);

/**
* Cas ou le matcheur trouve bien une correspondance
* entre lLa regex et L’adresse email (String).
*/

if (matcher.matches()) {

System.out.println(email + " est une adresse email valide.");

} else {

System.out.println(email + " n'est pas une adresse email valide.");

// Résultat (affichage) dans La console
contact@jiraws.com est une adresse email valide

https://www.jiraws.com
https://www.jiraws.com

< 5 Core

- Master Guide

Text Blocks (Blocs de Texte) : Permet de définir des chaines de
caractéres (String) sur plusieurs lignes, de maniére lisible.

Particulierement utile pour 1’écriture de contenus spécifiques

e HTML : HyperText Markup Language
e JSON : JavaScript Object Notation
e SQL : Structured Query Language

String basicHTML = """
<html>
<body>
<p>Hello, World!</p>
</body>
</html>

nmon
)

System.out.println("Bloc de texte : ");
System.out.println(basicHTML);

// Résultat (affichage) dans La console
Bloc de texte :
<html>
<body>
<p>Hello, World!</p>
</body>
</html>

String.length() : Retourne la longueur de la chaine de caractéres.

Souvent utilisé en la combinant avec une boucle for et la méthode
String.charAt(int index) pour itérer sur chaque caracteére.

String nomFormation = "JavaCore"; // Un texte composé de 8 caracteres

System.out.println("Taille du texte : + nomFormation.length());

// Résultat (affichage) dans La console
Taille du texte : 8

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

String.charAt(int index) Renvoie le caracteéere (char) se trouvant a
1’index (position) en argument dans la chaine de caracteres.

String nomFormation = "JavaCore";

System.out.println("Premier caractere : " nomFormation.charAt(e));
System.out.println("Second caractére : " nomFormation.charAt(1));
System.out.println("Troisiéme caractere : " nomFormation.charAt(2));

System.out.
System.out.

println("Quatriéme caractére :
println("Cinquiéme caractére :

+ + + + + + + +

nomFormation.
nomFormation.

charAt(3));
charAt(4));

System.out.println("Sixiéme caractere : " nomFormation.charAt(5));
System.out.println("Septieme caractere : " nomFormation.charAt(6));
System.out.println("Huitiéme caractere : " nomFormation.charAt(7));

// Résultat (affichage) dans La console

Premier caractere : J
Second caractere : a
Troisiéme caractére : v
Quatrieme caractere : a
Cinquiéme caractére : C
Sixieme caractere : o
Septiéme caractére : r
Huitieme caractere : e

String.substring(int beginIndex, int endIndex) Renvoie la partie
de la chaine de caractéres entre les index (position) en argument.

String nomFormation = "JavaCore";
String java = nomFormation.substring(e, 4);

System.out.println("Nom découpé : " + java);

// Résultat (affichage) dans La console
Nom découpé : "Java"

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

String.split(String regex) : Sépare la chaine de caracteéeres pour
chaque correspondance de 1’'expression en argument, et renvoie un
tableau contenant les éléments séparés.

String nomFormation = "Java_Core";
String[] nomFormationSepare = nomFormation.split(" ");
System.out.println("Nom séparé par '_' : " + nomFormationSepare);

// Résultat (affichage) dans La console
Nom séparé par '_' : ["Java", "Core"]

String.trim() : Renvoie une copie de la chaine de caractéres, sans
les espaces vides au début et a la fin (s'il y en a).

Trés pratique pour corriger une potentielle faute de frappe lorsqu’un
utilisateur entre une information dans un formulaire.

String nomFormation = JavaCore o

System.out.println("Nom aprés trim : " + nomFormation.trim());

// Résultat (affichage) dans La console
Nom aprés trim : "JavaCore"

String.replaceAll(String target, String replacement) : Renvoie une
chaine de caracteres, avec les correspondances de 1'argument target
remplacées par la valeur de 1l’argument remplacement.

String nomFormation = "JavaCore";
String futureFormation = nomFormation.replaceAll("Java", "Spring");

System.out.println("Nom de la future formation : " + futureFormation);

// Résultat (affichage) dans La console
Nom de la future formation : "SpringCore"

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

String.startsWith(String prefix) : Renvoie vrai (true) si

de caractéres commence par le prefix en argument.

String nomFormation = "JavaCore";

boolean commenceParJava = nomFormation.startsWith("Java");

boolean commenceParCore

System.out.println("Le nom commence par 'Java’

nomFormation.startsWith("Core");

+ commenceParJava);

System.out.println("Le nom commence par 'Core' : " + commenceParCore);

// Résultat (affichage) dans La console
Le nom commence par 'Java' : true
Le nom commence par 'Core' : false

String.endsWith(String suffix) : Renvoie vrai (true) si la chaine
caracteres se termine par le suffix en argument.

String nomFormation = "JavaCore";

boolean termineParCore

nomFormation.endsWith("Core");

boolean termineParJava = nomFormation.endsWith("Java");

System.out.println("Le nom termine par 'Core'’

+ termineParCore);

System.out.println("Le nom termine par 'Java’ : " + termineParJava);

// Résultat (affichage) dans Lla console
Le nom termine par 'Core' : true
Le nom termine par 'Java‘' : false

la chaine

de

String.toLowerCase() : Renvoie une copie de la chaine de caractéres

en minuscule.

String nomFormation = "JavaCore";

String nomEnMinuscule = nomFormation.tolLowerCase();

System.out.println("Nom en minuscule :

// Résultat (affichage) dans Lla console
Nom en minuscule : "javacore"

+ nomEnMinuscule);

71

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

String.toUpperCase() : Renvoie une copie de la chaine de caracteéeres
en majuscule.

String nomFormation = "JavaCore";

String nomEnMajuscule = nomFormation.toUpperCase();

System.out.println("Nom en majuscule : + nomEnMajuscule);

// Résultat (affichage) dans La console
Nom en majuscule : "JAVACORE"

String.indexOf(String target) : Renvoie 1'index (position) de la
premieére occurrence de la chaine spécifiée par le parametre target.

String nomFormation = "JavaCore";

int positionA nomFormation.indexOf("a");

int positionCore = nomFormation.indexOf("Core");
System.out.println("Position de la lettre 'a’ : " + positionA);
System.out.println("Position du début de 'Core’ " + positionCore);

// Résultat (affichage) dans La console

Position de la lettre 'a 1
Position du début de 'Core' : 4

String.lastIndexOf(String target) : Renvoie 1’index (position) de la

derniére occurrence de la chalne spécifiée par le parametre target.
String nomFormation = "JavaCore";

int positionA = nomFormation.lastIndex0f("a");
int positionCore = nomFormation.lastIndexOf("Java");

System.out.println("Derniére position de la lettre 'a' : + positionA);
System.out.println("Derniére position de 'Core'’ " + positionCore);

// Résultat (affichage) dans La console
Derniére position de la lettre 'a' : 3
Derniére position de 'Core' : 4

72

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

String.equals(String str) : Renvoie vrai (true) si les deux chaines
de caracteres sont identiques, caractere par caractere.

La classe String redéfinit (Override) la méthode héritée de la classe
Mére / Reine (Object) Object.equals(Object obj), pour proposer une
implémentation adaptée aux chaines de caracteéres.

System.out.println("JavaCore".equals("JavaCore")); // true
System.out.println("JavaCore".equals("javacore")); // false
System.out.println("JavaCore".equals("abcdefgh")); // false

// Résultat (affichage) dans La console
true
false
false

21. Manipulation Numérique (Number)

BigInteger : Classe permettant de manipuler des nombres entiers de
trés grande taille, dépassant les limites du type primitif long.

Utilisé par des applications nécessitant une précision mathématique
élevée, comme dans la cryptographie, le calcul de grands nombres
premiers, ou pour des systémes financiers.

BigInteger grandEntierl
BigInteger grandEntier2

new BigInteger("12345678901234567890");
new BigInteger("98765432109876543210");

// Multiplication de ces deux grands nombres
BigInteger produit = grandEntierl.multiply(grandEntier2);

System.out.println("Résultat : + produit);
// Tentative de conversion du résultat en long
long conversion = produit.longValue();

System.out.println("Valeur tronquée (dépassement) : + conversion);

// Résultat (affichage) dans La console
Résultat : 1219326311370217952237463801111263526900
Valeur tronquée (dépassement) : 1331246629686034420

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

BigDecimal : Classe permettant de manipuler des nombres décimaux de
grande précision, dépassant les limites du type primitif double.

Essentielle dans les applications nécessitant une grande précision des
calculs décimaux, comme en finance pour le calcul des taux d'intérét,
la facturation, et la comptabilité, ou les erreurs d'arrondis des
types a virgule flottante (float et double) ne sont pas acceptables.

new BigDecimal("1234567890123456.123456789");
new BigDecimal("9876543210987654.987654321");

BigDecimal grandDecimall
BigDecimal grandDecimal2

// Multiplication de ces deux grands décimaux
BigDecimal produit = grandDecimall.multiply(grandDecimal2);
System.out.println("Résultat : " + produit);

// Tentative de conversion du résultat en double
double conversion = produit.doubleValue();

System.out.println("Valeur tronquée (dépassement) : + conversion);

// Résultat (affichage) dans La console
Résultat : 12193263113702173772138374308793.945269013112635269
Valeur tronquée (dépassement) : 1.2193263113702175E31

Integer.parselnt(String str) : Tente de convertir la chaine de
caractéres passée en paramétre en valeur entiére primitive (int),
puis renvoie le résultat en cas de succes.

C’est une méthode trés pratique pour convertir des chaines de
caractéres en entiers, permettant ainsi de manipuler les informations
avec le type le plus adapté.

Attention : Une tentative de conversion d’une valeur non convertible
en valeur entiére générera une erreur NumberFormatException.

Integer.parselnt("25"); // agel = 25
Integer.parselnt("AZ"); // NumberFormatException

int agel
int age2

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

Integer.valueOf(String str) : Tente de convertir la chaine de
caractéres passée en paramétre en type enveloppe entier (Integer),
puis renvoie le résultat en cas de succes.

C’est une méthode similaire a Integer.parseInt(String str) avec pour
seule différence le type de retour (Integer au lieu de int).

Attention: Une tentative de conversion d’une valeur non convertible en
valeur entiére générera une erreur NumberFormatException.

Integer agel = Integer.valueOf("25"); // agel = 25
Integer age2 = Integer.valueOf("AZ"); // NumberFormatException

Math : Classe Utilitaire contenant des méthodes (méthode) permettant
de réaliser les opérations mathématiques, de la simple addition aux
calculs trigonométriques plus complexes.

Une classe dont il faut se souvenir pour éviter 1’'implémentation de
code inutile (et potentiellement défectueuse).

Math.min(int a, int b) : Renvoie la plus petite valeur des deux
passées en argument.

int plusPetit = Math.min(4, 10);

System.out.println("Résultat : " + plusPetit);

// Résultat (affichage) dans La console
Résultat : 4

Math.max(int a, int b) : Renvoie la plus grande valeur des deux
passées en argument.

int plusGrand = Math.max(4, 10);

System.out.println("Résultat : + plusGrand);

// Résultat (affichage) dans La console
Résultat : 10

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Math.random() : Renvoie une valeur aléatoire de type double,
comprise entre @ et 1.

double nombreAleatoire = Math.random();

System.out.println("Nombre aléatoire : + nombreAleatoire);

// Résultat (affichage) dans La console
Nombre aléatoire : 0.9246716297487397

On peut facilement générer des nombres aléatoires entre 0 et 100 en
combinant les méthodes Math.random() et Math.round(double a).

double nombreAleatoire = Math.random();
double multiplicationParl1@0 = nombreAleatoire * 100;
long resultatArrondi = Math.round(multiplicationParlee);

System.out.println("Nombre aléatoire sur 100 : + resultatArrondi);

// Résultat (affichage) dans La console
Nombre aléatoire sur 100 : 88

Math.round(double a) : Renvoie la valeur entiére arrondie la plus
proche de la valeur passée en argument.

Math.round(4.25);
Math.round(4.75);

long valeurArrondiel
long valeurArrondie2

System.out.println("Valeur arrondie 1 :
System.out.println("Valeur arrondie 2 :

+ valeurArrondiel);
+ valeurArrondie2);

// Résultat (affichage) dans La console
Valeur arrondie 1 : 4
Valeur arrondie 2 : 5

76

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide
Math.abs(int a) : Renvoie la valeur absolue correspondant a la
valeur passée en argument.

int valeurAbsoluel
int valeurAbsolue2

Math.abs(-360);
Math.abs(3000) ;

System.out.println("Valeur absolue 1 :
System.out.println("Valeur absolue 2 :

+ valeurAbsoluel);
+ valeurAbsolue2);

// Résultat (affichage) dans La console
Valeur absolue 1 : 360
Valeur absolue 2 : 3000

Math.sqrt(double a) : Renvoie la valeur correspondant a la racine
carrée (SQRT : Square Root) de la valeur passée en argument.

double racineCarreeDe50
double racineCarreeDel00

Math.sqrt(50);
Math.sqrt(100);

System.out.println("Racine carrée de 50
System.out.println("Racine carrée de 100 :

+ racineCarreeDe50);
+ racineCarreeDel090);

// Résultat (affichage) dans La console
Racine carrée de 50 : 7.0710678118654755
Racine carrée de 100 : 10.0

77

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

22. Dates et Temps (Dates and Times)

Date : Classe permettant de représenter un moment spécifique dans le
temps, avec une précision a la milliseconde preés.

Basée sur le nombre de millisecondes écoulées depuis le ler Janvier
19760 a minuit UTC (Coordinated Universal Time).

Date maintenant = new Date();

System.out.println("Date actuelle : + maintenant);

// Résultat (affichage) dans La console
Date actuelle : Fri Mar 15 18:18:18 CET 2024

LocalDate : Classe permettant de représenter une date sans heure, ni
fuseau horaire (jour / mois / année).

Utilisée pour les anniversaires, les jours fériés, etc.

LocalDate aujourdHui = LocalDate.now();

System.out.println("Aujourd'hui : + aujourdHui);

// Résultat (affichage) dans La console
Aujourd'hui : 2024-03-15

LocalTime : Classe permettant de représenter un horaire sans date,
ni fuseau horaire (heure / minute / seconde).

Utilisée pour les heures d'ouverture, les horaires de trains, etc.

LocalTime maintenant = LocalTime.now();

System.out.println("Heure actuelle : " + maintenant);

// Résultat (affichage) dans La console
Heure actuelle : 18:20:49.586992600

78

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

LocalDateTime : Classe combinant LocalDate et LocalTime, permettant
de représenter une date (jour / mois / année) avec un horaire
(heure / minute / seconde), mais sans fuseau horaire.

Utilisée pour les dates entiéres ne nécessitant pas de fuseau horaire.

LocalDateTime maintenant = LocalDateTime.now();

System.out.println("Date et heure actuelles + maintenant);

// Résultat (affichage) dans La console
Date et heure actuelles : 2024-03-15T718:22:11.212587500

ZonedDateTime : Classe équivalente a LocalDateTime et intégrant la
notion de fuseau horaire.

Utilisée par les applications dont les utilisateurs opérent sur
différents fuseaux horaires, évitant ainsi les erreurs d’horaires.

// Date compléte avec le fuseau horaire en argument
ZonedDateTime dateParis = ZonedDateTime.now(ZonelId.of("Europe/Paris"));

System.out.println("Date et heure a Paris + dateParis);

// Résultat (affichage) dans La console
Date et heure a Paris : 2024-03-15T18:23:22.4611536+01:00 [Europe/Paris]

Duration : Classe utilisée pour représenter une quantité de temps en
termes d'heures, de minutes et de secondes.

Elle permet de calculer le temps écoulé entre deux dates / instants.

LocalTime debut
LocalTime fin

LocalTime.of (10, 30); // 16H30
LocalTime.of (17, 45); // 17H45

Duration duree = Duration.between(debut, fin);

System.out.println("Temps écoulé : + duree.toSeconds() + " secondes");

// Résultat (affichage) dans La console
Temps écoulé : 26100 secondes

79

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Gestion des Données ==
[Data Management]

23. Tableaux (Arrays)

Tableau (Array) : Structure de données permettant de stocker, sous
la forme d’'une liste, un nombre fixe d'éléments du méme type.

C’est la forme primitive des suites d’éléments en Java, qui est a la
base du fonctionnement des autres types similaires conceptuellement
comme List<E>, Set<E> ou encore Queue<E>.

int[] intArray = {1, 2, 3, 4};

int premiereValeur = intArray[0];
int derniereValeur = intArray[3];
System.out.println("Premiére valeur du tableau : " + premiereValeur);
System.out.println("Derniére valeur du tableau : " + derniereValeur);

// Résultat (affichage) dans La console
Premiére valeur du tableau : 1
Derniere valeur du tableau : 4

Il s’agit notamment du type utilisé pour le paramétre de la méthode
main (entrée de programme), que 1’on croise trés souvent

/**
* La méthode main posséde un parametre qui en fait
* un tableau de chaines de caracteres (String)
*
* Ce tableau contient les arguments passés lors de L’exécution
* du fichier via une Lligne de commande (java <classe> argl arg2)
*/
public static void main(String[] args) {
// On peut récupérer les arguments passés en paramétre
String argl = args[9];
String arg2 = args[1];

// Suite du code ...

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

24. Généricité (Generics)

Generics (Généricité) : Mécanisme permettant de définir des classes
(classe), des interfaces (interface) et des méthodes (méthode)
paramétrables avec un (ou plusieurs) type de données.

Peut aussi étre lu “Multi Data Type” en raison de son objectif
principal qui est de permettre 1'implémentation de code s’adaptant a
plusieurs (multi) types (type) de données (data).

C’est grace a la généricité que les développeurs Java peuvent créer
des listes de chaines de caractéres (ArraylList<String>) ou de tout
autre type de données alors qu’il n’existe qu’une seule et unique
classe ArraylList<E> générique.

/**
* [’entéte de déclaration de La classe ArraylList<E> contient
* Le paramétre de type <E> impliquant que la classe soit générique.
*
* C’est en cela que L’instanciation de cette classe prend La forme
* * new ArraylList<String>();
* ou <String> remplace <E> lors de L’exécution du code.
*/
public class ArrayList<E> extends AbstractList<E>
implements List<E>, ... { ... }

/**
* La classe HashMap<K, V> posséde une déclaration similaire
a La différence qu’elle est paramétrée par deux types au lieu d’un.

* new HashMap<String, Integer>();
ou <String, Integer> remplace <K, V> au moment de L’exécution du code
*/
public class HashMap<K, V> extends AbstractMap<K, V>
implements Map<K, V>, ... { ... }

*
*
* Son instanciation est alors similaire, a un paramétre preés
*
%

81

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

25. Collections (Collections)

Collections : Classe Utilitaire contenant des méthodes permettant de
manipuler, trier ou encore rechercher les éléments dans un type
implémentant 1'interface Collection<E> (List, Set, etc.).

C’est une classe dont vous aurez besoin en Java, tét ou tard.

Collections.sort(List<T> list) : Tri les éléments de la liste passée
en argument selon leur ordre naturel, ou celui d’'un comparateur.

Existe également avec un paramétre supplémentaire de type Comparable
pour trier les éléments selon ce dernier et non 1’ordre naturel.

List<Integer> integerList = new ArrayList<>();
integerList.add(12);

integerList.add(254);

integerList.add(24);

integerList.add(65);

integerList.add(8);

integerList.add(982);

System.out.println("Ordre actuel : + integerlList);

// Tri la liste dans L’ordre naturel des éléments
Collections.sort(integerList);

System.out.println("Ordre apres tri : + integerList);

// Résultat (affichage) dans La console
Ordre actuel : [12, 254, 24, 65, 8, 982]
Ordre aprés tri : [8, 12, 24, 65, 254, 982]

Collection<E> : Interface générique (Généricité) déclarant les
méthodes (méthode) de base pour travailler avec des suites
d’'éléments, également appelées des collections.

Une collection peut étre vue comme une version grandement améliorée
d’un tableau : sa taille est dynamique (et non fixe), elle offre une
variété de méthodes de base permettant une manipulation plus précise
de ses éléments, et ses implémentations (telles que List<E> et Set<E>)
s’adaptent a des besoins bien spécifiques en programmation.

82

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Collection.add(E element) : Ajoute 1’'élément en argument a la fin de

la collection. Existe également avec un parametre supplémentaire de
type int pour ajouter 1’élément a une position précise.

List<String> textelList = new ArraylList<>();
textelList.add("Formation");
textelList.add("by JirAWS");

System.out.println("Liste initiale : " + textelList);

// Ajout de L’élément "JavaCore" a L’index 1 (2éme position)
textelList.add(1, "JavaCore");

System.out.println("Liste apres ajout spécifique : + textelist);

// Résultat (affichage) dans La console
Liste initiale : ["Formation", "by JirAWS"]
Liste aprés ajout spécifique : ["Formation", "JavaCore", "by JirAWS"]

Collection.remove(E element) : Supprime de la collection 1'élément
passé en argument, si ce dernier est présent dans la collection.

Existe également avec un paramétre de type int pour supprimer
1’élément a une position précise.

List<String> textelist = new ArraylList<>();
textelList.add("Formation");

textelList.add("JavaCore");

System.out.println("Liste initiale : " + textelList);
textelList.remove("JavaCore");

System.out.println("Liste aprés suppression 1 : " + textelist);

textelList.remove(®@); // Suppression de L’élément a L’index @

System.out.println("Liste aprés suppression 2 : " + textelList);

// Résultat (affichage) dans La console
Liste initiale : ["Formation", "JavaCore"]
Liste aprés suppression 1 : ["Formation"]
Liste aprés suppression 2 : []

83

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Collection.get(int index) : Renvoie 1’'élément se trouvant a 1’'index

(position) passé en argument.

List<String> textelist = new ArraylList<>();
textelList.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAWS");

String troisiemeElement = textelList.get(2); // "by JirAwS"

+ textelist);
+ troisiemeElement);

System.out.println("Liste actuelle :
System.out.println("Texte récupéré :

// Résultat (affichage) dans La console
Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]
Texte récupéré : "by JirAWS"

Collection.contains(E element) : Renvoie vrai (true) si 1’élément
passé en argument est présent dans la collection.

List<String> textelList = new ArraylList<>();
textelList.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAwWS");

System.out.println("Liste actuelle : " + textelList);

textelist.contains("Formation"); // true
textelList.contains("Python"); // false

boolean contientFormation
boolean contientPython

+ contientFormation);
+ contientPython);

System.out.println("Contient 'Formation’
System.out.println("Contient 'Python’

// Résultat (affichage) dans La console

Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]
Contient 'Formation' : true

Contient 'Python’ : false

84

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

Collection.size() : Renvoie le nombre d’'éléments (taille) présents

dans la collection.

List<String> textelist = new ArraylList<>();
textelList.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAWS");

int taillelListe = textelList.size(); // 3
System.out.println("Liste actuelle : " + textelList);

System.out.println("Taille de la liste : " + tailleliste);

// Résultat (affichage) dans La console
Liste actuelle : ["Formation", "JavaCore", "by JirAWS"]
Taille de la liste : 3

Collection.clear() : Supprime tous les éléments de la collection.

Trés utile pour réutiliser une collection déja instanciée,
ainsi d’utiliser davantage de mémoire.

List<String> textelList = new ArraylList<>();
textelist.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAWS");

System.out.println("Liste avant 'clear' : " + textelist);

textelList.clear();

System.out.println("Liste aprés ‘'clear’ + textelist);

// Résultat (affichage) dans La console
Liste avant ‘clear' : ["Formation", "JavaCore", "by JirAWS"]

Liste aprés 'clear' : []

évitant

85

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

Collection.isEmpty() : Renvoie vrai (true) si la collection est
vide, autrement dit, si elle ne contient aucun élément.

Préférable a 1'écriture manuelle d’'une expression booléenne utilisant
la méthode Collection.size() == 6;

List<String> textlList = new ArraylList<>();

System.out.println("Liste avant les ajouts : " + textList);
System.out.println("Résultat de 'isEmpty' : " + textList.isEmpty());

textList.add("Formation");
textList.add("JavaCore");
textList.add("by JirAWS");

System.out.println("Liste aprés les ajouts : " + textList);
System.out.println("Résultat de 'isEmpty' : " + textlList.isEmpty());

// Résultat (affichage) dans La console
Liste avant les ajouts : []
Résultat de 'isEmpty' : true

Liste aprés les ajouts : ["Formation", "JavaCore", "by JirAWS"]
Résultat de 'isEmpty' : false

Iterator : Interface spécifiquement congue pour itérer sur les
éléments d'un type Collection<E> (suite d’'éléments).

Elle offre une approche d'itération optimisée et sécurisée, avec des
méthodes (méthode) permettant de vérifier la présence d'éléments
suivants, d’accéder a 1'élément suivant et de supprimer des éléments
durant 1'itération, évitant ainsi les risques 1liés a 1'utilisation
d’une boucle for-each classique.

ListIterator : Une extension de 1'interface Iterator qui permet de
parcourir les éléments d’'un type List<E> dans les deux sens, de les
modifier durant 1'itération et d’'obtenir leurs index (position).

Permet notamment d’ajouter des éléments a la volée durant 1’itération,
sans craindre une ConcurrentModificationException comme avec une
itération via boucle for-each.

86

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Collection.iterator() : Renvoie un itérateur (Iterator) permettant
une itération optimale sur les éléments de la collection.

Une approche souvent délaissée en faveur d’une boucle for-each pour
les itérations simples ne nécessitant pas davantage de sécurité.

List<String> textelList = new ArraylList<>();
textelList.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAWS");

// Obtention de L'itérateur pour la liste
Iterator<String> iterator = textelList.iterator();

// Parcours de la liste a L'aide de L'itérateur
while (iterator.hasNext()) {
String texte = iterator.next();
System.out.println(texte);

// Résultat (affichage) dans La console
"Formation"

"JavaCore"

"by JirAWS"

Comparable<T> : Interface générique (Généricité) déclarant une

unique méthode pour comparer deux instances (objet) d’un méme type.

Notamment utilisé par les méthodes de tri sur les types Collection.
public class Personne implements Comparable<Personne> {

private int age;

public Personne(int age) {

this.age = age;

@Override
public int compareTo(Personne autre) {
return this.age - autre.age;

87

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

26. Listes (Lists)

List<E> : Interface générique (Généricité) déclarant les méthodes
(méthode) permettant la manipulation de suites (ou “listes”)
d’'éléments ordonnés du méme type et pouvant contenir des doublons.

C’est le type de Collection<E> le plus couramment utilisé, au travers
de la classe ArraylList<E> qui 1’implémente.

public interface List<E> extends SequencedCollection<E> { ... }

ArrayList<E> : Classe générique (Généricité) implémentant
1'interface List<E>, basée sur un tableau (array).

C’est la forme de List<E> la plus standard, pour les usages généraux.

List<String> textelist = new ArraylList<>();
textelist.add("Formation");
textelList.add("JavaCore");
textelList.add("by JirAwWS");

System.out.println("Liste aprées les ajouts : " + textelList);

// Résultat (affichage) dans La console
Liste aprés les ajouts : ["Formation", "JavaCore", "by JirAWS"]

LinkedList<E> : Classe générique (Généricité) trés similaire a
ArrayList<E> mais dont les éléments sont doublement liés.

Chaque élément connait 1’'élément qui le précéde et le succede, ce qui

rend ce type de liste particuliérement efficace pour les modifications

(ajout / suppression / insertion) intensives.

List<String> textelList = new LinkedList<>();
textelList.add("Formation");
textelList.add("JavaCore");

textelList.add("by JirAWS");

System.out.println("Liste apres les ajouts : " + textelist);

// Résultat (affichage) dans La console
Liste aprés les ajouts : ["Formation", "JavaCore", "by JirAWS"]

88

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

27. Ensembles (Sets)

Set<E> : Interface générique (Généricité) trés similaire a List<E>
mais qui ne permet pas les doublons d’'éléments.

C’est 1’interface de référence pour représenter des ensembles (Set)
d'éléments distincts, sans ordre particulier.

public interface Set<E> extends Collection<E> { ... }

HashSet<E> : Classe générique (Généricité) implémentant 1’'interface
Set<E>, basée sur une table de hachage (Hash), permettant ainsi un
acces rapide aux éléments.

La forme d’ensemble (Set) la plus standard, pour les usages généraux.

La table de hachage (Hash) permet & une instance de HashSet de
positionner les éléments contenus en fonction du résultat de leur
hachage et ainsi de les retrouver grace a cette valeur plutot qu’en
parcourant la suite d’éléments comme le fait un type List<E>.

Set<String> texteSet = new HashSet<>();

/**
* Rappel important : L’ordre d’ajout des éléments n’est pas assuré dans
* un HashSet, car il positionne les éléments en fonction du
* pésultat de Leur hachage (Hash) et non de Leur ordre d’insertion.
*/
texteSet.add("Formation");
texteSet.add("JavaCore");
texteSet.add("by JirAwWS");

System.out.println("Set aprés les ajouts : " + texteSet);

// Tentative d'ajout d'un doublon
texteSet.add("Formation");

System.out.println("Set aprés ajout de doublon : " + texteSet);
// Résultat (affichage) dans La console

Set apreés les ajouts : ["Formation", "by JirAWS", "JavaCore"]
Set apres ajout de doublon : ["Formation", "by JirAWS", "JavaCore"]

89

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

TreeSet<E> : Classe générique (Généricité) implémentant 1’'interface
Set<E>, basée sur un arbre rouge-noir, garantissant ainsi que les
éléments soient triés selon leur ordre naturel ou celui d’'une
implémentation de Comparable<T>.

Un TreeSet<E> peut étre vu comme une ArraylList<E> a la différence
qu’'il empéche 1’ajout de doublons d’éléments.

La notion d’arbre “rouge-noir” référe aux arbres binaires: des
structures d’éléments sous la forme d’arbre dont les branches ont

(au mieux) toutes la méme taille (les éléments étant les feuilles),

ce qui permet a une machine (binaire) de réaliser des recherches tres
efficaces, et également de conserver 1'ordre des éléments stockés dans
le cas du TreeSet<E>.

Set<Integer> integerSet = new TreeSet<>();

/**
* Rappel important : L’ordre naturel des éléments est assuré dans
* un TreeSet, contrairement a un HashSet.
*/

integerSet.add(244);

integerSet.add(99);

integerSet.add(150);

integerSet.add(10);

System.out.println("Set aprés les ajouts + integerSet);
// Tentative d'ajout d'un doublon
integerSet.add(150);

System.out.println("Set aprés ajout de doublon : + integerSet);

// Résultat (affichage) dans La console
Set apres les ajouts : [10, 99, 150, 244]
Set aprés ajout de doublon : [10, 99, 150, 244]

90

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

28. Dictionnaires (Maps)

Map<K, V> : Interface générique (Généricité) déclarant les méthodes
(méthode) permettant la manipulation de suite d’éléments au format
Clé-Valeur (K, V : Key, Value).

Une Map conserve le concept fondamental des suites (List) d’éléments.
Il s'agit d’une suite d’éléments, mais qui sont accessibles grace a
une clé associée plutét qu’un index (position).

Les éléments similaires a Map en langage Python sont notamment appelés
“Dictionnaire” : Mot -> Définition.

On peut voir ce guide comme une trés grande instance de Map, en raison
de sa structure : Mot-clé Java -> Définition.

public interface Map<K, V> { ... }

HashMap<K, V> : Classe générique (Généricité) implémentant
1'interface Map, basée sur une table de hachage (Hash), permettant
ainsi un acces rapide aux éléments.

C’est la forme de Map la plus standard, pour les usages généraux.

Comme avec la classe HashSet<E>, la classe HashMap<K, V> utilise le
résultat du hachage (Hash) pour positionner les éléments en fonction
de leur clé. Elle n'assure donc pas l’ordre d’insertion des éléments.

Map<String, Integer> langagesCreation = new HashMap<>();

/**
* Rappel important : L’ordre d’ajout des clés n’est pas assuré dans
* une HashMap, car il positionne les éléments en fonction du
* pésultat de Leur hachage (Hash) et non de Leur ordre d’insertion.
*/

langagesCreation.put("Java", 1995);

langagesCreation.put("Python", 1991);

langagesCreation.put("C", 1972);

System.out.println("Map aprés les ajouts + langagesCreation);

// Résultat (affichage) dans La console
Map aprés les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

TreeMap<K, V> : Classe générique (Généricité) implémentant
1’interface Map, basée sur un arbre rouge-noir, garantissant ainsi
que les clés soient triées selon leurs ordres naturels ou celui
d’'une implémentation de Comparable<T>.

La classe TreeMap<K, V> repose sur le méme systéme d’arbre
“rouge-noir” que la classe TreeSet<E>. L’explication sur les arbres
binaires se trouve dans la définition de TreeSet<E>.

Map<String, Integer> langagesCreation = new HashMap<>();

/**
* Rappel important : L’ordre naturel des clés est assuré dans
* un TreeMap, contrairement a une HashMap.
*/
langagesCreation.put("Java", 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés les ajouts + langagesCreation);

// Résultat (affichage) dans La console
Map aprés les ajouts : {"C" = 1972, "Java" = 1995, "Python" = 1991}

// On remarque que lLes entrées ont été triées alphabétiquement

Map.put(K key, V value) : Crée une entrée (un élément) dans la Map
avec la clé (key) en lui associant la valeur (value) passée en
argument, ce qui forme une paire clé-valeur.

Si la clé existe déja, alors sa valeur associée existante est
remplacée par la nouvelle passée en argument.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du lLangage / Valeur : Année d'apparition
langagesCreation.put("Java"™, 1995);

System.out.println("Map aprés 1’ajout : + langagesCreation);

// Résultat (affichage) dans La console
Map aprés 1’ajout : {"Java" = 1995}

92

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

Map.get(K key) : Renvoie la valeur associée a la clé passée en
argument si elle existe dans la Map. Renvoie null si la clé
n'existe pas ou qu’'elle n'a pas de valeur associée.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition
langagesCreation.put("Java", 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés les ajouts : " + langagesCreation);

Integer anneeCreationJava = langagesCreation.get("Java");

System.out.println("Apparition du langage Java + anneeCreationJava);

// Résultat (affichage) dans La console
Map aprés les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}
Apparition du langage Java : 1995

Map.remove(K key) : Supprime la clé passée en argument et sa valeur
associée. La paire (élément) clé-valeur est supprimée.

Renvoie vrai (true) si la suppression est validée, faux (false) sinon.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du langage / Valeur : Année d'apparition
langagesCreation.put("Java", 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés les ajouts + langagesCreation);

langagesCreation.remove("Java");

System.out.println("Map aprés 'remove' : + langagesCreation);

// Résultat (affichage) dans Lla console
Map aprés les ajouts : {"Java" = 1995, "C" = 1972, "Python"= 1991}
Map aprés 'remove' : {"C" = 1972, "Python"= 1991}

93

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Map.keySet() : Renvoie une collection de type Set<E> contenant
toutes les clés présentes dans la Map<K, V> (sans les valeurs).

Les clés d’une Map étant uniques, le type Set<E> est naturellement le
plus approprié grace a sa garantie d’unicité des éléments.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du lLangage / Valeur : Année d'apparition
langagesCreation.put("Java"™, 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés ajout : + langagesCreation);

Set<String> langageSet = langagesCreation.keySet();

System.out.println("Set de clés : " + langageSet);

// Résultat (affichage) dans La console
Map aprés ajout : {"Java" = 1995, "C" = 1972, "Python" = 1991}
Set de clés : ["Java", "C", "Python"]

Map.values() : Renvoie une Collection<E> contenant toutes les
valeurs présentes dans la Map (sans leurs clés).

Map<String, Integer> langagesCreation = new HashMap<>();

// ClLé : Nom du langage / Valeur : Année d'apparition
langagesCreation.put("Java"™, 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés ajout : + langagesCreation);

Collection<Integer> anneelListe = langagesCreation.values();

System.out.println("Liste des valeurs : + anneeliste);

// Résultat (affichage) dans La console
Map aprés ajout : {"Java" = 1995, "C" = 1972, "Python" = 1991}
Liste des valeurs : [1995, 1972, 1991]

94

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Map.entrySet() : Renvoie une collection de type Set<E> contenant les
paires clé-valeur (Entry<K, V>) de la Map.

Trés utile lorsque 1’on souhaite itérer avec une boucle for-each sur
1’ensemble des éléments d’une Map, afin de les manipuler.

Map<String, Integer> langagesCreation = new HashMap<>();

// Clé : Nom du lLangage / Valeur : Année d'apparition
langagesCreation.put("Java"™, 1995);
langagesCreation.put("Python", 1991);
langagesCreation.put("C", 1972);

System.out.println("Map aprés ajout : + langagesCreation);
// Conversion des entrées (éléments) de La Map en un ensemble (Set)
Set<Entry<String, Integer>> langagesSet = langagesCreation.entrySet();

System.out.println("Set d'Entrées : " + langagesSet);

// Itérations sur les éléments (Entry<X, Y>) de L’ensemble (Set)
for (Entry<String, Integer> langage : langagesSet) {

System.out.println(langage.getKey() + " - " + langage.getValue());

// Résultat (affichage) dans La console
Map aprés ajout : {"Java" = 1995, "C" = 1972, "Python"
Set d'Entrées : ["Java" = 1995, "C" = 1972, "Python"

1991}
1991]

// Affichage de la boucle for-each
Java - 1995

C - 1972

Python - 1991

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

29. Files d’'Attente (Queues)

Queue<E> : Interface générique (Généricité) partageant (avec List<E>
et Set<E>) le concept de manipulation de suites d’éléments, en étant
spécialement adaptée a la création de “files d’attentes” (Queue).

C’est un type de collection assez spécifique, concgu pour le traitement
séquentiel d’éléments. Les éléments ajoutés (offer) en premiers seront
les premiers a étre extraits (poll) pour étre traités. C’est ce qu’on
appelle la méthode “FIF0”, acronyme de “First In, First Out”.

// La classe LinkRedList implémente L’interface Queue
Queue<Integer> fileAttente = new LinkedList<>();

// Ajout d'éléments - Equivalent de Collection.add(E element)
fileAttente.offer(1);
fileAttente.offer(2);
fileAttente.offer(3);

System.out.println("Queue aprés les ajouts : " + fileAttente);

/**
* Extraction du prochain élément en attente
* Equivalent de Collection.get(0) suivi de Collection.remove(9)
*/
Integer elementExtraitl = fileAttente.poll(); // 1
System.out.println("Elément extrait : " + elementExtraitl);
System.out.println("Queue apres extraction N°1 : " + fileAttente);

// Extraction du prochain élément en attente

Integer elementExtrait2 = fileAttente.poll(); // 2
System.out.println("Elément extrait : " + elementExtrait2);
System.out.println("Queue aprés extraction N°2 : " + fileAttente);

// Résultat (affichage) dans La console
Queue aprés les ajouts : [1, 2, 3]
Elément extrait : 1

Queue aprés extraction N°1 : [2, 3]
Elément extrait : 2

Queue aprés extraction N°2 : [3]

96

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

30. Flux (Streams)

Stream (Flux) : Un flux correspond a un ensemble d’éléments qui vont
pouvoir étre manipulés séquentiellement, les uns aprés les autres,
ou parallélement (parallélisme) avec un traitement en simultané.

C’est sur cette logique que repose 1’interface Stream<E> (API), qui
permet de réaliser des opérations sur les types Collection<E>.

Stream<E> (API) : Interface générique (Généricité) déclarant les
méthodes (méthode) permettant de manipuler les éléments d’un type
collection (List<E>, Set<E>, etc.) avec notamment des opérations de
filtrage, de recherche, de mappage, ou encore de collecte.

C’est une interface incontournable pour les développeurs Java.

public interface Stream<T> extends BaseStream<T, Stream<T>> { ... }

Collection.stream() : Convertit une Collection<E> en Stream<E>
permettant d’accéder aux méthodes (méthode) de cette interface.

On peut voir g¢a comme une “sorte” de transformation en boucle for-each
permettant de traiter un flux (une suite) d’éléments un par un.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments
integerList.add(1);
integerList.add(25);
integerList.add(300);

System.out.println("Liste apres les ajouts : + integerlList);

// Transformation de la Liste en stream (flux)
Stream<Integer> integerStream = integerList.stream();

System.out.println("Stream : " + integerStream); // [1, 25, 300]
// Résultat (affichage) dans La console

Liste aprés les ajouts : [1, 25, 300]
Stream : java.util.stream.ReferencePipeline$Head@b4c966a

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Stream.filter(Predicate<T> predicate) : Renvoie un Stream<E> ne
contenant que les éléments respectant le prédicat (condition) passé
en argument.

Cette méthode peut étre visualisée comme une boucle for-each qui va

faire une itération sur chaque élément du flux, pour vérifier s'ils

respectent la condition donnée et ne conserve que ceux pour lesquels
cette derniére renvoie vrai (true).

List<Integer> integerList = new ArraylList<>();

// Ajout d'éléments
integerList.add(1);
integerList.add(25);
integerList.add(300);

System.out.println("Liste apreés les ajouts : + integerList);
/**
* 1. Transformation de lLa liste en stream (flux)
* 2. Filtrage des éléments pour ne garder que ceux dont lLa valeur
> est supérieure a 30
*/
Stream<Integer> intStreaml = integerList.stream()
.filter(entier -> entier > 30);

System.out.println("Stream aprés ler filtrage + intStreaml);
/**
* La transformation en stream n’est plus nécessaire, car déja faite
* 1. Filtrage des éléments pour ne garder que ceux dont Lla valeur
> est supérieure a 500
*/
Stream<Integer> intStream2 = intStreaml.filter(entier -> entier > 500);

System.out.println("Stream apres 2eme filtrage : + intStream2);

// Résultat (affichage) dans La console
Liste aprés les ajouts : [1, 25, 300]
Stream aprés ler filtrage : [25, 300]
Stream apreés 2éme filtrage : []

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Stream.map(Function<T,R> mapper) : Applique la fonction passée en
argument sur chaque élément du flux et renvoie un Stream<E> des
éléments modifiés.

Cette méthode peut étre visualisée comme une boucle for-each qui va
faire une itération sur chaque élément du flux, appliquant 1’'opération
(fonction) demandée et générant un nouveau flux avec les résultats.

La fonction passée en paramétre ne doit pas forcément étre une
opération de modification. Elle peut également étre une opération de
lecture (récupération) d’une valeur (comme un attribut), permettant
ainsi de former un nouveau flux (stream) constitué de ces valeurs.

Le nom de la méthode “map” est emprunté au concept de la Programmation
Fonctionnelle, oUu "mapper" signifie: “appliquer une fonction a chaque
élément d'une collection pour en obtenir une nouvelle transformée”.

List<Integer> integerList = new ArraylList<>();

// Ajout d'éléments
integerList.add(1);
integerList.add(25);
integerList.add(300);

System.out.println("Liste aprés les ajouts : " + integerList);

/**
* 1. Transformation de lLa liste en stream (flux)
* 2. Multiplication par 2 de La valeur de chaque élément du Stream
*/
Stream<Integer> intStream = integerList.stream()
.map(entier -> entier * 2);

System.out.println("Stream aprés filtrage : " + intStream);
// Résultat (affichage) dans La console

Liste aprés les ajouts : [1, 25, 300]
Stream aprés filtrage : [2, 50, 600]

99

https://www.jiraws.com
https://www.jiraws.com

Core 100

Master Guide

Stream.forEach(Function<T,R> mapper) : Permet d’'effectuer une
itération via une boucle for-each sur les éléments du Stream<E>.

Attention: Cette méthode ne renvoie rien (void), c’est-a-dire qu’elle
ne renvoie pas de Stream<E> utilisable comme ce que font les autres
méthodes vues dans ce guide.

Cette méthode est totalement comparable a 1’'implémentation d’une
boucle for-each: elle itére sur chaque élément présent dans le Stream,
et applique le bloc de code fourni en paramétre.

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments
integerList.add(1);
integerList.add(25);
integerList.add(300);

System.out.println("Liste aprés les ajouts : + integerList);
// 1. Transformation de lLa Lliste en stream (flux)
Stream<Integer> intStream = integerList.stream();

// 2. Itération sur chaque élément grdce a une boucle forEach
intStream.forEach(entier -> {

System.out.println("Affichage de 1’élément : + entier);

I8

System.out.println("Stream aprés les opérations + intStream);

// Résultat (affichage) dans La console
Liste aprés les ajouts : [1, 25, 300]
Affichage de 1'élément : 1

Affichage de 1’élément : 25

Affichage de 1’élément : 300

Stream apres les opérations : [1, 25, 300]

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Stream.sorted() : Trie les éléments du Stream<E> en fonction de leur
ordre naturel, ou de celui donné par un comparateur (Comparator<T>).

I1 existe également la méthode surchargée (Overload) permettant de
fournir un comparateur externe afin d’appliquer une logique de tri
bien spécifique : Stream.sorted(Comparator<T> comparator).

List<Integer> integerList = new ArraylList<>();

// Ajout d'éléments dans un ordre non naturel (non croissant)
integerList.add(200);
integerList.add(25);
integerList.add(36);
integerList.add(44);

System.out.println("Liste apres les ajouts : + integerList);
/**
* 1. Transformation de Lla liste en stream (flux)
* 2. Tri des éléments du stream en fonction de Leur ordre naturel
*/
Stream<Integer> intStream = integerList.stream()
.sorted();

System.out.println("Stream aprés le tri + intStream);

// Résultat (affichage) dans La console
Liste aprés les ajouts : [200, 25, 36, 44]
Stream aprés le tri : [25, 36, 44, 200]

101

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide 102

Stream.tolList() : Renvoie une collection de type List<E> a partir
des éléments contenus dans le Stream<E>.

Particulierement utile en sortie des opérations effectuées avec les
méthodes (méthode) de Stream<E> pour réutiliser un type d’objet plus
généraliste et compatible avec, par exemple, les bases de données.

List<Integer> integerList = new ArraylList<>();

// Ajout d'éléments

integerList.add(200);
integerList.add(25);
integerList.add(36);
integerList.add(44);

System.out.println("Liste aprés les ajouts : " + integerList);

/**
* 1. Transformation de Lla liste en stream (flux)
* 2. Transformation du stream en liste

*/
List<Integer> liste = integerList.stream()
.tolList();
System.out.println("Liste générée a partir du stream : " + liste);

// Résultat (affichage) dans La console
Liste aprés les ajouts : [200, 25, 36, 44]
Liste générée a partir du stream : [200, 25, 36, 44]

https://www.jiraws.com
https://www.jiraws.com

'y

Core

Master Guide

Stream.distinct() : Renvoie une copie du Stream<E> ne contenant que

des éléments uniques (distincts), aprés avoir supprimé les doublons.

On peut voir g¢a comme la conversion d’un type List<E> (acceptant les
doublons) en Set<E> (garantissant 1’unicité des €éléments).

List<Integer> integerList = new ArrayList<>();

// Ajout d'éléments

integerList.add(200);
integerList.add(25);
integerList.add(200);
integerList.add(44);
integerList.add(200);

System.out.println("Liste aprés les ajouts : + integerList);

/**
* 1. Transformation de lLa liste en stream (flux)
* 2. Exclusion des éléments répétitifs
*/
Stream<Integer> integerStream = integerList.stream()
.distinct();

System.out.println("Stream aprés 'distinct'’ + integerStream);

// Résultat (affichage) dans La console
Liste aprés les ajouts : [200, 25, 200, 44, 200]
Stream aprés ‘'distinct' : [200, 25, 44]

103

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Gestion des Exceptions A\
[Exception Handling]

31. Objets Jetables (Throwables)

Throwable : Classe mere de toutes les erreurs possibles en Java.
Elle posséde deux sous-classes principales : Exception et Error.

Le mot “Throwable”, qui se traduit en francais par “Jetable”, prend
tout son sens dans la gestion des erreurs dans ce langage, avec
notamment 1’usage des mots-clés throw, throws ou encore catch,
directement basés sur le verbe “jeter” et "attraper” en anglais.

Elle offre les méthodes (méthode) de base pour traiter les erreurs en
Java, comme par exemple la méthode “printStackTrace()” qui affiche un
résumé complet (StackTrace) de 1’erreur survenue.

public class Throwable implements Serializable { ... }

StackTrace : Résumé d’une erreur (Throwable) survenue durant
1’exécution d’'un programme. Elle contient notamment le nom du type
de 1'erreur, un bref message d’'explication et les lignes de code
exécutées, ayant entrainé l'erreur.

Un élément essentiel pour les développeurs, qui joue un réle crucial
durant une phase de débogage. Apprendre a les lire et a les comprendre
n’est pas une option pour devenir un développeur aguerri.

/**
* Exemple de StackTrace Llors d’une tentative de division par ©
* Important : Le sens de lecture d’une StackTrace est de bas en haut
* Type de L’erreur : Exception
* Nom de L’erreur : ArithmeticException
* Message de L’erreur : "/ by zero" ("Division par zero")
* Nom du fichier concerné : Main.java
*

Ligne qui a déclenché L’erreur : at Main.methode3(Main.java:33)
*/

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Main.methode3(Main.java:33)

at Main.methode2(Main.java:28)

at Main.methodel(Main.java:13)

at Main.main(Main.java:9)

104

https://www.jiraws.com
https://www.jiraws.com

I" ((q

Core 105

Master Guide

try : Mot-clé permettant d’exécuter un bloc de code en demandant a
Java de se “préparer” a une potentielle erreur (Throwable).

C’est un mécanisme a utiliser dans toutes les situations présentant un
(ou plusieurs) risque potentiel, comme par exemple

e Une tentative de connexion a une base de données, qui pourrait
€tre indisponible, en raison de problématiques techniques.

e Une tentative d’ouverture (lecture) d’un fichier, nécessitant
que ce dernier soit bien présent a 1’emplacement (Path) indiqué
dans le programme, et que les permissions systéeme autorisent le
programme a manipuler le fichier concerné.

Ce mot-clé se combine avec 1’'autre mot-clé catch, permettant de
traiter 1’erreur potentielle qui pourrait survenir.

/**
* Code fictif et incomplet, pour mettre en Lumiére lLe mot-clé try
* La suite du guide contient les définitions des autres mots-clés
* relatifs aux erreurs, ainsi que des exemples de code plus complets.

W
try {

// Tentative de division par @ (qui échoue systématiquement)
int resultat = 10 / ©;

System.out.println("Résultat de la division : " + resultat);

/**
* Le code présenté ci-dessus n’affiche rien, car le programme
* est interrompu a la Lligne générant une erreur.
* [?instruction System.out.println est donc ignorée.
*/

/**
* Cependant, une erreur (Throwable) sera belle et bien déclenchée
* et Le langage Java affichera une StackTrace dans la console.

*/

https://www.jiraws.com
https://www.jiraws.com

=> Core 106

Master Guide
<

catch : Bloc de code associé a un bloc try capturant 1l'erreur
(Throwable) survenue dans ce dernier, permettant ainsi de la gérer.

Le bloc catch contient en paramétre 1'’erreur survenue, représentée
sous la forme d’un objet, qui est alors utilisable programmatiquement.

Attention : il est important de retenir que 1’exécution de ce bloc est
optionnel, car son exécution dépend du déclenchement d’une erreur dans
le bloc try. Il est donc judicieux de ne placer a 1'intérieur que le
code relatif a un scénario d’erreur dans votre programme

e Gestion de 1l'erreur : une erreur n’est pas juste une
information, c’est une perturbation du programme qui aurait pu
interrompre 1'’exécution de ce dernier. I1 faut donc faire une
implémentation cohérente en lien avec les scénarios d’erreurs.

e Application du contexte : dans une application beaucoup plus
poussée que les exemples de ce guide, le bloc catch peut
permettre d’effectuer des opérations en réaction aux erreurs,
comme par exemple avec 1’envoi de notifications pour prévenir
1’équipe de production qu’une erreur a été rencontrée.

int resultat;

try {

/**
* Tentative de division par 6 qui échoue systématiquement
* (dans cet exemple explicite) et qui va donc stopper
* [’exécution du programme et passer dans lLe bloc catch
* gvec L’erreur en paramétre (quli est ici une Exception)
*/

resultat = 10 / 0;

System.out.println("Résultat de la division + resultat);

} catch(Exception e) {
System.out.println("Une erreur est survenue durant la division.");
e.printStackTrace();

// Résultat (affichage) dans la console

Une erreur est survenue durant la division.

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Main.methodel(Main.java:14)

https://www.jiraws.com
https://www.jiraws.com

S5 Core 107

<= Master Guide

finally : Bloc de code s'exécutant aprés un bloc try et ses blocs
catch associés, indépendamment du fait que ces derniers aient été
exécutés ou non.

On écrit a 1'intérieur de ce bloc tout le code qu’on aurait souhaité
exécuter quoi qu’'il advienne dans les blocs try et catch, qu’une
erreur (Throwable) soit déclenchée ou pas.

Bien que 1’ajout de try-with-resources (avec Java 7) soit venu réduire
les cas d’utilisations du bloc finally, il existe des cas ol son usage
s’avére treés pratique. Un trés bon exemple est celui d’'un outil de
chronométrage : il est démarré au début du bloc try pour chronométrer
des étapes potentiellement lentes, et sera stoppé dans le bloc finally
pour qu’'il ne dépende pas de 1’exécution potentielle d’un bloc catch.

int resultat = 0;

try {

System.out.println("Démarrage de la division...");

// Tentative de division par @ (qui échoue systématiquement)
resultat = 10 / 0;

System.out.println("Ligne qui s’affiche si tout va bien.");
} catch(Exception e) {

System.out.println("Une erreur est survenue durant la division.");
e.printStackTrace();

} finally {
System.out.println("Fin de la division.");

System.out.println("Résultat final : + resultat);

// Résultat (affichage) dans La console

Démarrage de la division...

Une erreur est survenue durant la division.

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Main.methode5(Main.java:14)

Fin de la division.

Résultat final : ©

https://www.jiraws.com
https://www.jiraws.com

= Core 108

Master Guide
<

try-with-resources : Une autre forme de try, ayant le méme objectif
que ce dernier, mais prenant en parametre des ressources de type
AutoCloseable qui seront “automatiquement fermées”.

C’est une optimisation de code permettant d’assurer la fermeture de
ressources nécessitant une ouverture, et gourmandes en mémoire,
évitant ainsi aux développeurs d’avoir a le faire eux-mémes.

Le try-with-resources a été ajouté en Java 7, pour

e Faciliter 1’'écriture du code : vous trouverez ci-dessous deux
exemples de code, avec et sans 1’usage de try-with-resources,
témoignant avec évidence de 1’'intérét de ce dernier.

e Optimiser le code : de nombreux problémes de mémoire peuvent
étre évités grdce a 1'usage de try-with-resources. I1 suffit
d’un matin a moitié réveillé pour qu’'un développeur commette un
simple oubli qui pourrait se transformer en une fuite de
mémoire, entrainant une surconsommation de la machine hébte.

/**
* Premiére approche - AVEC try-with-resources (Version optimisée)
*/

public void lireFichier(String path) {

/**
* Quverture du flux de Llecture (BufferedReader) du fichier dans
* La variable "br" qui est alors utilisable dans Lle bloc try
* mais pas ailleurs, a cause du mécanisme de Portée de Variable.
*
*
*

La variable "br" qui est un type Closeable sera automatiquement
fermée apreés L’exécution des blocs try et catch.
*/
try (BufferedReader br = new BufferedReader(new FileReader(path))) {

String ligne;
while ((ligne = br.readlLine()) != null) {

System.out.println(ligne);

} catch (IOException e) {
e.printStackTrace();

https://www.jiraws.com
https://www.jiraws.com

Core 109

Master Guide

/**
* Seconde approche - SANS try-with-resources (Version non-optimisée)
*/

public void lireFichier(String path) {

/**
* Déclaration de La variable (pour le flux de Lecture) en dehors
* des blocs try / catch afin de respecter Le mécanisme de
* La Portée de Variable (et ainsi L’utiliser dans le finally).
*/
BufferedReader br = null;

try {

// Ouverture manuelle du flux de Llecture (BufferedReader)
br = new BufferedReader(new FileReader(path));

String ligne;

while ((ligne = br.readLine()) != null) {
System.out.println(ligne);

} catch (IOException e) {
e.printStackTrace();
} finally {

/**
* Fermeture manuelle du flux de lLecture (BufferedReader)
* dans le bloc finally, pour s’assurer de son exécution
* et ainsi éviter les surconsommations de mémoire.
*/

if (br != null) {

try {
br.close();

} catch (IOException e) {
e.printStackTrace();

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

throw : Instruction permettant de propager une erreur (Throwable)
qui devra étre traitée ailleurs dans le programme.

C’est 1'’instruction utilisée par tous les programmes qui déclenchent
des erreurs (Throwable), contraignant les développeurs a faire usage
des blocs try et catch pour les traiter.

Cette instruction est particuliérement utile lorsqu’on souhaite
déclencher des erreurs spécifiques a nos programmes, en ayant fait au
préalable une implémentation customisée de la classe Exception.

public void affichageDivision(int dividende, int diviseur) {

/**
(Exemple de code totalement fictif)

*
*
* Pour éviter que la division ne puisse générer une erreur,

* on prévient cette derniére avec une condition vérifiant Les
*

*

*

cas Llimitants de L’opération (ici, une division).

CustomArithmeticException a été inventée pour cet exemple.

*/
if(dividende == @ || diviseur == 0) {
throw new CustomArithmeticException("Division par zéro !");
}
else {
System.out.println("Résultat : " + (dividende / diviseur));
}

throws : Mot-clé se plagant dans la déclaration d’'une méthode, et
indiquant que cette derniére peut propager le ou les type(s)
d’erreurs (Throwable) mentionnés.

Le programme appelant cette méthode sera alors contraint de faire
usage des blocs try et catch pour traiter les erreurs, ou alors
d'utiliser lui-méme le mot-clé throws dans sa déclaration.

public void affichageDivision(int a, int b) throws ArithmeticException {

System.out.println("Résultat : " + (a / b));

110

https://www.jiraws.com
https://www.jiraws.com

/)

Core

Master Guide

32. Exceptions (Exceptions)

Exception : Premiére classe fille de la classe Throwable, permettant
de représenter les erreurs d'un programme exécuté par la JVM.

On précise ici la notion d’exécution “par la JVM”, car c’est toute la
différence entre les deux classes filles de la classe Throwable : une
Exception est liée a 1’exécution interne d’un programme, quand une
Error concerne les problématiques liées a 1’environnement extérieur de
la JVM ou a ses défaillances techniques en interne.

La tentative de division par zéro est un exemple typique d’Exception
elle résulte d’'une ArithmeticException, qui est due a la logique d’un
programme qui ne prévient pas cette erreur (avec une condition par
exemple) et donc qui est due au programme en lui-méme.

public class Exception extends Throwable { ... }

RuntimeException : Classe de base pour les erreurs (Exception) de
toutes sortes lancées durant 1'exécution normale d’'un programme.

Une tentative de manipulation d’une variable référence qui n’a pas été
initialisée (null), lévera une Exception nommée NullPointerException,
une sous-classe de RuntimeException.

public class RuntimeException extends Exception { ... }

NullPointerException : Exception lancée lorsque 1l'on essaie de
manipuler ou d’'accéder a un membre d’'une variable référence qui n’a
pas encore été initialisée (null).

Une erreur trés basique, mais qui a le mérite d’étre trés facilement
retrouvable (débogage) dans le code avec 1’'aide d’une StackTrace.

public class NullPointerException extends RuntimeException { ... }

ArithmeticException : Exception lancée lors d’erreurs arithmétiques
comme la division par zéro.

public class ArithmeticException extends RuntimeException { ... }

111

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

ClassCastException : Exception lancée lorsqu’une tentative de
conversion (Casting) échoue.

Une tentative de conversion d’un élément de type List<E> en Map<K, V>
déclenchera une ClassCastException car le type source (List<E>) n’a
aucun lien d’héritage avec le type cible (Map<K, V>).

public class ClassCastException extends RuntimeException { ... }

IndexOutOfBoundsException : Classe de base pour les erreurs
(Exception) qui concerne les tentatives d’'accés a des indices
(index) invalides.

Traduit par “Index en dehors des bornes” (ou limites), bornes qui sont
établies par un début (index le plus petit) et une fin (index le plus
grand) d’une suite d'éléments (collection ou tableau).

public class IndexOutOfBoundsException extends RuntimeException { ... }

ArrayIndexOutOfBoundsException : Exception lancée lorsqu’un
programme tente d’'accéder a un élément d'un tableau avec un indice
(index) invalide.

Une tentative d’accés a 1’'élément en cinquieme position (indice 4)
d’un tableau n’en contenant que 3 (indice min = 6 / max = 2),
déclenchera une ArrayIndexOutOfBoundsException.

public class ArrayIndexOutOfBoundsException extends
IndexOutOfBoundsException { ... }

ConcurrentModificationException : Exception lancée lorsqu’une suite
d’'éléments est modifiée alors qu’'elle est en cours d'itération.

Une boucle for-each qui ajouterait ou supprimerait un élément d’une
Collection<E> durant son itération sur cette derniére, entrainerait
une ConcurrentModificationException car les éléments “chargés” (load)
ne seraient plus les mémes qu’'au départ de la boucle.

public class ConcurrentModificationException extends RuntimeException

{ ...}

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

IOException : Classe de base pour les erreurs (Exception) liées aux
Entrées / Sorties (IO : Input / Output).

Une tentative d’ouverture de fichier dans un programme n’étant pas
autorisé (permission systéme) a le faire, déclenchera une IOException.

public class IOException extends Exception { ... }

FileNotFoundException : Exception lancée lorsqu’on essaie d’'accéder
a un fichier (File) qui n’'existe pas sur le systéme.

Le probléme peut également venir d’une étourderie durant 1’'écriture du
chemin d’accés (Path) par le développeur.

public class FileNotFoundException extends IOException { ... }

ClassNotFoundException : Exception lancée lorsqu’on essaie de
charger une classe qui n'existe pas.

Dans certains cas, cette erreur peut survenir a cause d’une mauvaise
configuration du projet ou lorsqu’une bibliothéque importée contient
une classe du méme nom que celle dans le projet.

public class ClassNotFoundException extends ReflectiveOperationException

{ ...}

SQLException : Classe de base pour les erreurs (Exception) liées aux
bases de données SQL (Structured Query Language).

Une requéte mal formulée envoyée par votre programme a une base de
données déclenchera une SQLException.

public class SQLException extends Exception
implements Iterable<Throwable> { ... }

113

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

33. Erreurs Systéeme (System Errors)

Error : Seconde classe fille de la classe Throwable, permettant de
représenter les erreurs externes a la JVM, ou les erreurs graves
causées par un dysfonctionnement de cette derniere.

La JVM étant installée sur une machine héte (ordinateur ou serveur),
elle partage les ressources (processeur, mémoire vive et stockage) de
cette derniére avec les autres processus fonctionnant dessus.

Ce qu’il faut retenir, c’est que le bon fonctionnement de la JVM
exécutant vos programmes en Java dépend fortement de 1’environnement
dans lequel elle est installée. Il existe beaucoup de facteurs dans un
systéme informatique qui peuvent générer une erreur dans un programme.
Bien qu'il soit fondamental d'anticiper ces aléas, la capacité de
l'application a gérer directement de telles erreurs est souvent
limitée, voire impossible, car ce type d’erreur est au-dela de sa
portée d’action. C’est cette nette distinction entre les erreurs
internes et externes a un programme qui a entrainé la création des
deux sous-classes principales (Exception et Error) de la classe
générale Throwable.

public class Error extends Throwable { ... }

OutOfMemoryError : Erreur qui se produit lorsque la JVM (Java
Virtual Machine) ne dispose pas d’une quantité suffisante de mémoire
vive pour faire fonctionner un programme.

Il faut veiller a ce que ce manque de mémoire vive ne soit pas dd a
son propre programme, potentiellement trop gourmand.

public class OutOfMemoryError extends VirtualMachineError { ... }

StackOverflowError : Erreur qui se produit lorsqu’une récursivité
excessive (et souvent sans fin) est exécutée.

Une fonction récursive mal implémentée (sans condition d’arrét)
résulte trés souvent d’une StackOverflowError.

public class StackOverflowError extends VirtualMachineError { ... }

114

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

34. Ressources Gérables (Manageable Resources)

AutoCloseable : Interface déclarant une unique méthode dont la
redéfinition (Override) devra étre destinée a la libération des
ressources utilisées par une instance.

Pour accéder (lecture) aux données, ou modifier (écriture) les données

d’un fichier dans un programme, il faudra “ouvrir” un flux numérique
vers ce dernier, permettant donc de faire transiter les données (en
lecture, ou en écriture). Ce flux, qui consomme de la mémoire vive,

nécessitera d’'étre fermé aprés exécution, pour libérer les ressources

utilisées par cette “connexion” au fichier.

Un exemple d’application réelle est la classe BufferedWriter: elle
ouvre un flux d’écriture vers un fichier cible, et nécessite donc
d'étre fermée afin de libérer 1’espace mémoire.

Lors de la fermeture (close) d’une instance de cette classe:

e FElle s’assure que toutes les données en attente (Buffer)
d’écriture soient bien écrites dans le fichier, ou supprimées.

e Flle libére les ressources relatives au flux de connexion vers
le fichier, avec par exemple 1’identificateur de fichier.

e FElle marque 1’objet comme fermé, pour qu’il déclenche (throw)
une IOException si on tente de l’utiliser a nouveau.

public interface AutoCloseable {

void close() throws Exception;

Closeable : Interface fille de AutoCloseable, spécifique aux flux
d’entrée / sortie, déclarant l'utilisation spécifique du type
IOException plutdét qu’'une simple Exception générale.

On 1'utilise implicitement au travers de certaines classes comme
BufferedReader dans un try-with-resources.

public interface Closeable extends AutoCloseable {

void close() throws IOException;

115

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Entrée / Sortie @
[Input / Output]

35. Scanner (Scanner)

Scanner : Classe permettant de lire les données de différents types
d’entrées comme 1l'entrée standard (Console IDE), un fichier (File)
ou une simple chaine de caractéres (String).

Scanner scanner = new Scanner(System.in);

System.out.print("Entrez votre nom : ");
String nom = scanner.nextLine(); // L'utilisateur écrit "JirAWS"

System.out.println("Bonjour, + nom);

System.out.print("Entrez votre age : ");
int age = scanner.nextInt(); // L'utilisateur écrit "30"

System.out.println("Vous avez " + age + " ans.");

System.out.print("Entrez votre année de naissance : ");

// Erreur volontaire : une chaine non-convertible en nombre est entrée
int annee = scanner.nextInt(); // L'utilisateur écrit "AZERTY"

// Lignes ci-dessous ignorées a cause de L’Exception levée ci-dessus
System.out.println("Vous étes né en " + annee);

scanner.close(); // Fuite de mémoire ! Ressource non fermée.

// Résultat (affichage) dans La console

Entrez votre nom : "JirAWS"

Bonjour, JirAWS

Entrez votre age : "30"

Vous avez 30 ans.

Entrez votre année de naissance : "AZERTY"

Exception in thread "main" java.util.InputMismatchException
at java.base/java.util.Scanner.throwFor(Scanner.java:947)
at java.base/java.util.Scanner.next(Scanner.java:1602)
at java.base/java.util.Scanner.nextInt(Scanner.java:2267)
at java.base/java.util.Scanner.nextInt(Scanner.java:2221)
at Main.main(Main.java:18)

116

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

36. Fichiers (Files)

File : Classe permettant de représenter sous la forme d’'objet un
fichier ou un dossier (répertoire) dans le systéme de la machine
(ordinateur ou serveur) exécutant le programme.

Cette classe permet de manipuler des fichiers dans un programme, et
notamment de lire et/ou écrire des données dans ces derniers a 1’aide
des classes FileReader et FileWriter.

/**
* On admet ici qu’un fichier javacore masterguide.txt se trouve bien
* dans le dossier jiraws, lui-méme dans le dossier home du systeéeme.
*/
File javaCoreGuide = new File("/home/jiraws/javacore_masterguide.txt");

Path : Classe permettant de représenter un chemin (path) vers une
ressource dans le systéme (fichier ou dossier).

Bien que les chemins puissent étre directement représentés avec du
simple texte (String), la classe Path offre une approche beaucoup plus
sécurisée, plus robuste et plus adaptée aux opérations sur les
systémes de fichiers. Elle offre notamment des méthodes (méthode) de
recherche et de filtrage qui sont primordiales pour une application.

Path chemin = Paths.get("/home/jiraws/javacore_masterguide.txt");

System.out.println("Chemin d'acces + chemin);

/**
* Une fois L’instance de Path créée, on peut directement accéder
* au fichier vers lequel cette derniére pointe dans lLe systeme.
*/

File javaCoreGuide = chemin.toFile();

// Résultat (affichage) dans La console
Chemin d'acces : "/home/jiraws/javacore_masterguide.txt"

117

https://www.jiraws.com
https://www.jiraws.com

S5 Core 118

<= Master Guide

FileReader : Classe permettant de lire le contenu textuel d’'un
fichier (File), caractere (char) par caractére.

Offre un accés trés simple a la lecture du contenu d’un fichier,
mais consomme beaucoup de ressources a cause de la répétition
d’'opérations internes. Un FileReader va lire les caractéres du
contenu un par un, ce qui implique une forte répétition des
opérations qui peuvent étre optimisées avec un BufferedReader.

Malgré son manque d’'optimisation, cette classe reste pertinente pour
les besoins de lecture non fréquents. Si une application nécessite
la lecture d'un fichier occasionnellement, 1'impact sur les
performances sera négligeable en comparaison d’'une application ayant
des besoins fréquents (plusieurs dizaines de fois par minute).

String path = "/home/jiraws/javacore_masterguide.txt";

/**
* Utilisation d’un try-with-resources pour fermer automatiquement
* le FileReader (reader) qui est de type Closeable.
*/

try (FileReader reader = new FileReader(path)) {

int i;
/**
* Tant qu’il y a un caractére a lLire dans le fichier, on exécute
* La méthode .read() qui Llira Le prochain caractére
*
* S1 Le fichier contient une unique Lligne "Bonjour", cette derniére
* sera lLue séquentiellement : 'B' 'o"' 'n' 'j' 'o'" 'u' 'r’
*/
while ((i = reader.read()) != -1) {

System.out.print((char) i);

} catch (IOException e) {
e.printStackTrace();

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

BufferedReader : Classe permettant de faciliter la lecture du

contenu textuel d’un fichier (File), ligne par ligne, a partir d'un

flux d'entrée comme un FileReader.

Le mise en tampon (Buffering), appliquée a la lecture de fichier,

réduit le nombre d'opérations d'entrée/sortie en lisant les
caractéres par paquets plutdét qu'individuellement.

Cette approche limite grandement les interactions avec le systeme de

stockage (Disque Dur / SSD).
String path = "/home/jiraws/javacore_masterguide.txt";

/**
* Utilisation d’un try-with-resources pour fermer automatiquement

* Le BufferedReader (br) et lLe FileReader qui sont de type Closeable.

/

try (BufferedReader br = new BufferedReader(new FileReader(path))) {

int compteurLigne = 0;
String ligne;

/**
* Tant qu’il y a une ligne a lire dans le fichier, on exécute
* La méthode .readlLine() qui Lira lLa prochaine Lligne
*
* Pour cet exemple, on admettra que Lle fichier Lu contienne Lles
* lignes suivantes : "Bonjour", "Bonne Llecture !" et "Au revoir"
*/
while ((ligne = br.readlLine()) != null) {
compteurLigne++;

System.out.println("Ligne N°" + compteurLigne +

} catch (IOException e) {
e.printStackTrace();

// Résultat (affichage) dans La console

Ligne N°1 : "Bonjour"
Ligne N°2 : "Bonne lecture !"
Ligne N°3 : "Au revoir"

+ ligne);

119

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

FileWriter : Classe permettant d’'écrire du texte, caractere (char)
par caractere, dans un fichier (File).

Offre un accés trés simple a 1’écriture de contenu dans un fichier,
mais partage les mémes enjeux de performances que FileReader.

String path = "/home/jiraws/javacore_masterguide.txt";

/**
* Utilisation d’un try-with-resources pour fermer automatiquement
* le FileWriter (fileWriter) qui est de type Closeable.

/
try (FileWriter fileWriter = new FileWriter(path)) {

// Instruction écrivant directement dans le fichier
fileWriter.write("Hello JirAWS!");

} catch (IOException e) {
e.printStackTrace();

BufferedWriter : Classe permettant de faciliter 1'écriture de
contenu textuel d’un fichier (File), ligne par ligne, a partir d'un
flux de sortie comme un FileWriter.

Utilise le méme principe de mise en tampon (Buffering) que le
BufferedReader, permettant ainsi de limiter le nombre d’interactions
avec le systéme de stockage (Disque Dur / SSD).

String path = "/home/jiraws/javacore_masterguide.txt";

/**

* Utilisation d’un try-with-resources pour fermer automatiquement

* Le Bufferedwriter (bw) et Le FileWriter qui sont de type Closeable.
/
try (BufferedWriter bw = new BufferedWriter(new FileWriter(path))) {

bw.write("Welcome to JavaCore!");
bw.newLine(); // Ajoute une nouvelle Ligne
bw.write("Goodbye, JirAWS!");

} catch (IOException e) {
e.printStackTrace();

120

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

INEL- 4
[Advanced]

37. Programmation Fonctionnelle (Functional Programming)

Lambda Function (Fonction Lambda) : Mécanisme permettant de créer et
d’'utiliser une fonction dite “anonyme”, c'est-a-dire une fonction

définie “a la volée” n’ayant pas été déclarée (déclaration)
explicitement au préalable dans le code.

Les fonctions Lambda perturbent souvent les développeurs débutants,
notamment a cause du terme “anonyme”. Les fonctions Lambda ne sont
pourtant que des fonctions comme les autres, partageant le méme but

final qui est d’exécuter du code.

On les utilise souvent sans savoir qu’elles portent ce nom, comme par

exemple avec 1'interface Stream<E>.
List<Integer> integerList = new ArraylList<>();

// Ajout d'éléments

integerList.add(200);
integerList.add(25);
integerList.add(36);

System.out.println("Liste apreés les ajouts : + integerList);
/**
* 1. (stream) Transformation de La lListe en stream (flux)
* 2. (forEach) Utilisation d’une expression Lambda pour 1itérer sur
w chaque élément du stream. Le bloc de code entre Lles
parenthéses est une fonction lLambda possédant un
unique parameétre nommé ici "entier"
*/
integerList.stream()
.forEach(entier -> {
System.out.println("Entier actuel :

+ entier);

1

// Résultat (affichage) dans La console
Liste aprés les ajouts : [200, 25, 36]
Entier actuel : 200

Entier actuel : 25

Entier actuel : 36

121

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

38. Fils d’'Exécution (Threads)

Runnable : Interface déclarant une unique méthode “run()” dont
1'implémentation sera exécutée par un thread (Thread).

C’'est 1’'élément clé de 1'exécution en parallele (parallélisme) en
programmation Java. Un thread ne pourra lancer une exécution paralléle
d’une classe que si cette derniére implémente (implements) Runnable.

Le langage Java n’autorisant pas 1'héritage de plusieurs classes
(également appelé “héritage multiple”), cette interface pourra étre
implémentée par les classes ayant déja hérité, et ne pouvant donc pas
hériter de la classe Thread.

@FunctionalInterface
public interface Runnable {

// Unique méthode déclarée par L’interface Runnable.
void run();

public class MaTache implements Runnable {
// Redéfinition de lLa méthode run() déclarée dans Runnable
@Override
public void run() {
System.out.println("Code exécuté dans un thread séparé.");

public static void main(String[] args) {

// Instanciation d'un Thread pour exécuter notre Classe Runnable
Thread thread = new Thread(new MaTache());

// Démarre L'exécution du thread et appel La méthode "run()"
thread.start();

// Résultat (affichage) dans La console
Code exécuté dans un thread séparé.

i’r-\\
=

122

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide 123

Thread : Classe permettant de gérer les exécutions en parallele
(parallélisme), aussi appelées “multi-taches” ou “multi-thread”.

Un thread en Java ne peut exécuter que le code d’une classe ayant
implémenté (implements) 1’'interface Runnable.

La classe Thread implémentant elle-méme 1’'interface Runnable, une
classe héritant de Thread devra redéfinir la méthode Runnable.run().

Chaque Thread créé peut exécuter un programme spécifique, permettant
ainsi d’accélérer certains traitements (recherches, sauvegarde, etc.).

Plus la machine exécutant le programme est puissante, plus vous
pourrez créer de threads sans concession de performance.

/**
* La Classe Thread implémente L’1interface Runnable.
* Les classes héritant de Thread devront redéfinir “Runnable.run()”.
*/

public class Thread implements Runnable { ... }

public class MaTache extends Thread {
// Redéfinition de lLa méthode run() déclarée dans Runnable
@Override
public void run() {
System.out.println("Code exécuté dans un thread séparé.");

public static void main(String[] args) {

// Instanciation d'un Thread pour exécuter notre Classe Runnable
Thread thread = new Thread(new MaTache());

// Démarre L'exécution du thread et appel de La méthode "run()"
thread.start();

// Résultat (affichage) dans La console
Code exécuté dans un thread séparé.

https://www.jiraws.com
https://www.jiraws.com

= Core 124

Master Guide
<

volatile : Modificateur garantissant que les changements effectués
sur la valeur d’une variable soient bien visibles (et considérés)
par les différents threads (Thread) en cours d’exécution.

Dans un contexte multi-threads (avec plusieurs threads), chaque thread
posséde un petit emplacement mémoire dédié lui permettant de manipuler
ses données et ainsi d’assurer son bon fonctionnement. Si un thread
modifie la valeur d’une variable dans son espace mémoire dédié, les
autres threads n’auront pas accés “immédiatement” a cette nouvelle
valeur car il faudra attendre que la mise a jour ait bien été propagée
dans chacun d’entre eux. Le risque est donc qu’un thread qui n’a pas
encore été mis a jour utilise 1’ancienne version de cette valeur, ce
qui a de fortes chances de générer une erreur.

Le modificateur “volatile” est donc la pour garantir que la valeur de
la variable soit stockée dans un emplacement mémoire général (partagé
par tous les threads), assurant ainsi qu’ils accédent tous a la méme
valeur, immédiatement et donc sans probleme de synchronisation.

volatile boolean executionEnCours = true;

Pour comprendre 1’'intérét du modificateur “volatile”, on peut essayer
d’utiliser une analogie dans le réel

e C(Cas sans 1’utilisation de “volatile” : Vous travaillez sur un
projet avec une équipe de 10 développeurs (16 threads). Votre
manager, le directeur technique, vient vous transmettre une
directive importante qu’il ne communiquera pas a vos collégues a
cause de sa charge de travail importante. Vous étes alors le
seul détenteur de la derniére valeur de cette information, que
les autres développeurs (threads) ne pourront donc pas
considérer, ce qui entrainera inévitablement un probléme de
synchronisation entre les différents membres de 1’équipe.

e C(Cas avec 1’'utilisation de “volatile” : Vous travaillez sur un
projet avec une équipe de 10 développeurs (16 threads). Votre
manager, le directeur technique, vient transmettre une
information (variable) importante en faisant une annonce
générale aux 10 développeurs de 1’équipe. Tous les développeurs
sont alors détenteurs de la derniére valeur de cette
information, empéchant ainsi les problémes de synchronisation
entre les différents membres de 1'équipe.

https://www.jiraws.com
https://www.jiraws.com

=> Core 125

Master Guide
<

synchronized : Modificateur garantissant qu'une méthode ou qu’un
bloc de code ne puisse étre exécuté que par un seul thread (Thread)
a la fois, parmi tous ceux en cours d’'exécution.

I1 permet donc d’empécher les exécutions simultanées, aussi appelées
“exécutions concurrentes”, évitant ainsi toutes les problématiques
liées a la synchronisation.

Son utilisation est particuliérement pertinente pour éviter qu’un
morceau de code (bloc de code, ou méthode entiére) modifiant des
informations importantes ne puisse étre exécuté par plusieurs threads
en méme temps, ce qui entrainerait tot ou tard des conflits.

En interne, un morceau de code (bloc de code, ou méthode entiére)
indiqué comme “synchronized” posséde un unique verrou de sécurité qui
ne pourra étre accaparé que par un unique thread. Il pourra alors
exécuter le code avec 1’assurance d’étre le seul a y avoir acceés, tant
qu’il aura ce verrou en sa possession. Une fois son travail terminé,
le thread libérera le verrou qui sera alors disponible pour le
prochain thread qui attendait de pouvoir exécuter ce code. Il faut
donc en comprendre les avantages (sécurité), mais également les
potentiels inconvénients (performances): le modificateur
“synchronized” et son systéme d’exécution exclusif peuvent créer une
“liste d’attente” de threads attendant pour leur tour.

public synchronized void methodeSynchronisee() {
// Méthode protégée contre les exécutions concurrentes
synchronized(this) {

// Bloc de code protégé contre lLes exécutions concurrentes

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

39. Annotations (Annotations)

Annotation : Mécanisme utilisant le symbole @ et permettant
d'associer une ou plusieurs métadonnées a des éléments de code
(classe, méthode, variable, etc.) dans le but d'informer le
compilateur ou d'influencer le comportement de 1'application.

L’utilisation d’annotations peut aller du simple marqueur, permettant
de détecter les éléments dans un programme, jusqu’a 1’implémentation
d’une réelle logique programmatique avec des annotations possédant un
ou plusieurs paramétre(s) et exécutant du code.

L’annotation @Override (redéfinition de méthode) informe le
compilateur que 1’implémentation de la méthode annotée remplace celle
transmise au travers de 1’'héritage. Si une méthode est annotée avec
@0verride alors qu’elle n’existe pas dans une classe mére ou dans une
interface, une erreur de compilation sera explicitement indiquée au
développeur. Il pourra alors chercher la cause de cette erreur,
pouvant étre une simple faute de frappe dans le nom de la méthode, ou
parfois méme une tentative de redéfinition dans le mauvais fichier.

40. Réflexion (Reflection)

Reflection (Réflexion) : Permet a un programme d'examiner et de
modifier son propre code a 1'exécution.

C’est un concept avancé en programmation, qui est trés abstrait pour
les débutants mais qu’il est bon de connaitre si on le rencontre.

try {

// Créer une instance de lLa classe MyClass via lLa réflexion
Class<?> myClass = Class.forName("MyClass");
Object myObject = myClass.getDeclaredConstructor().newInstance();

// Appelle La méthode helloWorld de MyClass via Lla réflexion
Method method = myClass.getMethod("helloWorld");
method.invoke(myObject);

} catch (Exception e) {
e.printStackTrace();

126

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

41. Sérialisation (Serialization)

Serializable : Interface marquant une classe dont les instances
(objet) peuvent étre sérialisées. Aucune méthode n'est requise pour
implémenter cette interface, elle sert principalement de marqueur.

public interface Serializable {

/**
* Cette 1interface ne déclare aucune méthode
* car elle ne fait office que de “marqueur?”
* qui sera considéré par le lLangage Java.
*/

transient : Modificateur permettant d’'ignorer un attribut durant le
processus de sérialisation lorsqu’on ne souhaite pas le transmettre.

Exemple : Un mot de passe sera souvent exclu de la sérialisation.

Permet également d’écarter les données inutiles a 1’envoi et ainsi
réduire la taille du résultat a transférer.

public class Utilisateur implements Serializable {

private String email;
private transient String motDePasse;

Sérialisation : Processus de conversion d'un objet dans un format
universel (comme JSON, XML, etc.) pouvant étre transmis a une autre
application. Processus souvent utilisé sur Internet lorsque plusieurs
applications développées différemment doivent communiquer ensemble,
ayant donc recours a des formats de données de transition.

Désérialisation : Processus inverse de la sérialisation, impliquant
la reconstruction d’'objet(s) a partir de données au format universel
(comme JSON, XML, etc.). Requiert une étape d’analyse (parsing) des
données sérialisées afin de reconstituer correctement 1'objet.

127

https://www.jiraws.com
https://www.jiraws.com

Core 128

Master Guide

Concepts et Principes de Développement @
[Development Concepts and Principles]

42. Bonnes Pratiques (Good Practices)

Cache : Espace mémoire d’'une application dans lequel sont stockés
temporairement des résultats d’'opérations afin qu’elle n’'ait pas a
refaire le calcul si on lui redemande la méme chose. C’est un des
premiers facteurs d’optimisation d’une application (en dehors de
1’optimisation du code de cette derniére) et qui est utilisé par la
quasi-totalité des solutions informatiques.

Design Patterns (Patrons de Conception) : Solutions réutilisables
pour des problémes souvent rencontrés dans la conception logicielle.

Ils sont généralement divisés en trois catégories principales:

e Design Patterns de Création : Singleton, Factory, Builder..
e Design Patterns Structurels : Composite, Bridge, Adapter..
e Design Patterns Comportementaux : Iterator, State, Command..

L ’apprentissage au moins théorique des Design Patterns est un trés bon
moyen d’améliorer son niveau de conception en développement.

Une certaine maitrise du domaine est cependant nécessaire pour
s’assurer de la bonne compréhension des tenants et des aboutissants.

Metadata (Métadonnées) : Donnée qui fournit des informations sur
d'autres données. Des informations comme 1'auteur, le titre et la
durée d’un fichier vidéo sont des métadonnées de ce dernier.

Refactoring (Refactor) : Processus consistant a réorganiser le code
source d'un programme dans le but d'améliorer sa lisibilité, sa
maintenabilité et sa structure. Implique souvent une réécriture
compléte du programme lorsqu’il a été mal congu initialement ou que
les besoins ont trop évolué avec le temps.

Versioning (Gestion des Versions) : Principe visant a considérer
chaque modification d’'un projet de développement comme une nouvelle
version de ce dernier, permettant ainsi de séparer logiquement et
chronologiquement les différents ajouts de code. Un principe
indispensable pour le développement logiciel, utilisé par
l’intégralité (sans exception ?) des projets commercialisés.

https://www.jiraws.com
https://www.jiraws.com

=> Core 129

Master Guide
<

43. Principes de Conception (Design Principles)

DRY (Don't Repeat Yourself) : Principe visant a réduire les
répétitions de code. La redondance (répétitions) d’une logique dans
votre code devrait étre factorisée avec des fonctions (fonction).
C’est un grand principe qui doit guider les développeurs durant la
conception de leurs programmes. Concevoir un programme en essayant au
maximum de prévoir et ainsi d’éviter les répétitions de code aura,
dans la plupart des cas, un impact trés positif sur la cohérence de
1’architecture finale de 1’application.

KISS (Keep It Simple, Stupid) : Principe de conception encourageant
la simplicité et 1'évitement de la complexité inutile. Les solutions
simples et efficaces sont souvent meilleures sur le long terme que les
solutions complexes. Les logiciels complexes ne sont en fait souvent
que des ensembles de petites fonctionnalités simples qui forment un
tout compliqué. Plus le développeur est expérimenté, plus il aura
tendance a utiliser le principe KISS et a le conseiller aux
développeurs en devenir.

YAGNI (You Aren't Gonna Need It) : Principe de développement qui
recommande de ne pas ajouter une fonctionnalité avant qu'elle ne
soit réellement nécessaire. Est-ce que vous pensez que des gens
auront besoin d’une fonctionnalité, ou est-ce que vous en étes sOr ?
Sur quoi vous appuyez-vous pour le justifier ? Les comportements des
utilisateurs sont parfois inattendus, voire surprenants. Certaines
fonctionnalités qui semblaient évidentes peuvent se retrouver
totalement inutilisées par les utilisateurs finaux de 1’application.

Les développeurs en devenir sont souvent enthousiastes et se
retrouvent a chasser plusieurs lapins en méme temps. Si 1’enthousiasme
est un trés bon signe, il faut cependant garder la téte froide.
Chacune des fonctionnalités ajoutées est une complexité apportée dans
l’application. Elles auront besoin d’étre maintenues, améliorées et
présentent toutes un potentiel risque d’erreur qui pourrait entrainer
une consommation de temps pour les corriger.

https://www.jiraws.com
https://www.jiraws.com

S5 Core 130

<= Master Guide

SOLID : Ensemble de cing principes de conception en Programmation
Orientée Objet qui visent a rendre les logiciels plus flexibles,
compréhensibles et maintenables.

Il est important de bien considérer que 1’assimilation de ces cing
grands principes requiert une certaine expérience en développement.

Vous trouverez ci-dessous de bréves explications de chacun d’entre
eux, qui vous sembleront trés probablement vagues pour le moment.
L’important est de garder les grandes idées en téte, pour étre capable
de les reconnaitre quand vous les rencontrerez.

e S - Single Responsibility Principle (SRP): Un élément ne doit
avoir qu’un seul but. Une classe Voiture ne doit servir qu’a
représenter et manipuler des “voitures”, et ne doit donc
contenir que les données et les comportements 1iés a ce concept.

e 0 - Open/Closed Principle (OCP): Les entités logicielles
(classe, fonction, module, etc.) doivent étre ouvertes a
1'extension, mais fermées a la modification. L’ajout d’une
nouvelle fonctionnalité ne doit pas entrainer une modification
du code déja existant, sauf dans le cas d’un refactor.

e L - Liskov Substitution Principle (LSP): Les instances (objet)
d'une classe mére doivent pouvoir étre remplacées par des
instances d'une classe fille sans affecter le programme.

e I - Interface Segregation Principle (ISP): Une classe
implémentant (implements) une interface ne doit pas se retrouver
avec des méthodes héritées qui ne lui serviront pas. Mieux vaut
faire plusieurs petites interfaces spécifiques qu’une seule
grande générale qui ne conviendra pas a tout le monde.

e D - Dependency Inversion Principle (DIP): Les modules de haut
niveau (logiques globales) ne devraient pas dépendre des modules
de bas niveau (solutions techniques). Quand on veut construire
une maison, on essaie au maximum de ne pas dépendre des
matériaux : on commence par un plan abstrait de ce qu’on veut
(logique globale), qu’on viendra adapter ensuite avec les
matériaux (solutions techniques).

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Glossaire Général de la Programmation &
[General Programming Glossary]

Algorithme : Suite finie et ordonnée d’'instructions (instruction)
dans un programme qui sera exécuté pour résoudre un probléme.

Le mot algorithme fait souvent peur car il est associé aux morceaux de
code a la complexité élevée. Il n’en est pourtant rien: un code trés
simple et facilement compréhensible est également un algorithme.

API (Application Programming Interface) : Intermédiaire entre deux
systémes qui prend souvent la forme de fonctionnalités accessibles
publiquement et permettant d’'utiliser un service.

L’interface Stream<E> en Java est une API qui, au travers de ses
méthodes trés simples d’acces, permet de réaliser des opérations
complexes sur les structures de données (Collection, List, Set, etc.).

Lorsqu’on se connecte a une application en utilisant un compte Google,
Facebook, Microsoft, ou d’une autre compagnie, 1’application concernée
utilise une API d’authentification utilisateur mise a disposition par
l’entreprise concernée pour “déléguer” ce travail (et ses enjeux).

Boilerplate : Terme faisant référence aux morceaux de code basiques
mais nécessaires d’'une implémentation et dont la logique est
redondante, si ce n'est ennuyeuse, pour les développeurs.

Dans le cadre du principe d’Encapsulation en Java, 1’'implémentation
des accesseurs (Getter) et des mutateurs (Setter) peut étre considérée
comme du code boilerplate, car ils sont présents dans chaque classe,
et dans la majorité des cas leur intérét n’est pas aussi important que
le voudrait le principe d’Encapsulation.

Bibliothéque (Librairie) : Regroupement d’éléments (fonction,
classe, interface, enum, etc.) répondant a des besoins spécifiques
et que les développeurs peuvent utiliser.

En Java, la librairie Apache Commons propose un ensemble de solutions
(fonction) répondant a toutes sortes de problématiques communes au
développement, allant de la manipulation de chaines de caracteéres
(String) a la gestion de fichiers (File), en passant par des
opérations mathématiques spécifiques et bien d'autres choses encore.

131

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Framework : Semblable a une bibliotheque, mais qui impose un systeme
de fonctionnement propre aux besoins auxquels il répond.

Le but final d’un framework est de créer un “cadre” de travail,
c’'est-a-dire un environnement de travail optimal pour répondre a des
besoins, mais imposant certaines regles de fonctionnement.

Le framework Java Spring est, comme pour une bibliothéque, un
regroupement d’éléments (fonction, classe, interface, enum, etc.) que
les développeurs peuvent utiliser pour réaliser des applications web.

A la différence d’une bibliothéque, les fonctionnalités du framework
Java Spring imposeront un mode de fonctionnement, avec des attentes
spécifiques d’implémentations et une certaine direction quant a
1’architecture de 1’'application.

Buffer (Tampon) : Zone temporaire de stockage en mémoire utilisée
pour stocker des données en attendant qu'elles soient traitées.

Dans une entreprise de livraison qui posséde des entrepdts de stockage
de marchandises, on peut voir les préparateurs de commandes comme un
exemple réel de “buffer” dans la vraie vie. Sans ces derniers, les
livreurs devraient aller chercher eux-mémes les marchandises a livrer
dans 1’entrepdt, ce qui leur ferait perdre un temps précieux.

Compilation : Etape de traduction d’un code source écrit par un
développeur en un code plus facilement compréhensible, et donc plus
efficacement exécutable, par une machine.

Méme si la simple installation du JRE sur une machine peut lui
permettre de comprendre et d’exécuter un programme écrit en Java, rien
ne vaudra les performances obtenues dans son langage natif.

Interprétation : Exécution d’'un programme sans compilation au
préalable. Les instructions sont traduites (interprétées) en un
langage machine seulement au moment de leur exécution.

Autrement dit, on peut dire qu’'un programme interprété sera lu comme
si c’'était la premiére fois a chaque exécution, tandis qu’un programme
compilé sera “appris par ceur” pour étre plus efficace.

On constate une nette différence de performance en faveur des langages

compilés, mais 1’interprétation posséde également ses avantages,
offrant notamment une meilleure flexibilité et un débogage rapide.

132

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Chiffrement (Encryption) : Conversion d’informations en données
illisibles pour préserver leur confidentialité. Elles pourront étre
déchiffrées, et donc retransformées, dans leur état d’origine.

Les sites Internet utilisant HTTPS chiffrent les informations de vos
échanges avec les serveurs web, évitant ainsi que ces dernieres ne
puissent étre lues durant leur transport entre vous et les serveurs.

Hachage (Hash) : Conversion d’'informations similaire au chiffrement,
sauf qu’'il n'y a pas de retour en arriére (déchiffrement) possible.

Les mots de passe, pour étre stockés en base de données, ne sont pas
simplement chiffrés, au risque qu’une faille ne les expose et qu’'ils
puissent étre déchiffrés derriére. Ils seront plutét hachés (hashed),
ce qui assure que méme en cas de faille exploitable, 1’'information
soit pratiquement inutilisable par les pirates.

Débogage (Debugging) : Processus durant lequel un développeur essaie
d’identifier la ou les sources d’une erreur (bug / bogue) dans un
programme afin d'appliquer une correction.

Une compétence clé du métier de développeur, qui est source de
blocages et de frustrations lorsqu’elle n’est pas maitrisée.

Déploiement : Mise a disposition d’une application aux utilisateurs.

Le déploiement d’une application web consiste a 1'héberger dans un
serveur accessible sur Internet, impliquant donc plusieurs étapes
comme la configuration de 1’environnement d’exécution ou encore
l’installation du code source de 1’'application.

Dépréciation (Deprecation) : Processus de marquage d’'un élément
comme obsoléte et destiné a ne plus étre utilisé dans le futur.

L "annotation @Deprecated sur un élément en Java sert d’avertissement
aux développeurs, impliquant alors qu’'ils doivent cesser de 1’'utiliser
en faveur d’une alternative ajoutée plus récemment.

Intégration Continue (Continuous Integration) : Action d’intégrer
fréguemment le travail d’'une équipe de développement a un projet.

En général, au moins une fois par jour, en utilisant un outil de
gestion des versions (Versioning) comme Git. Chaque intégration est
automatiquement vérifiée par la construction du projet et 1'exécution
de tests, ce qui permet de détecter rapidement les erreurs.

133

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

IDE (Integrated Development Environment) : "Environnement de
Développement Intégré”, soit un logiciel fournissant un ensemble
complet d'outils pour assister les développeurs dans leur métier.

I1 suffit d’essayer 1’expérience d’écrire un programme sur une
application de traitement de texte basique comme Bloc-notes sur
Windows pour se rendre compte de 1’immense rdéle que joue un IDE.

Instruction : Ligne de code demandant a la machine d'effectuer une
opération spécifique. Se termine par un ; (point-virgule) en Java.
A la différence de son cousin Python dans lequel un saut de ligne
indique la fin d’une instruction, les sauts de ligne en Java n’ont
pour but que de rendre le code plus lisible pour les humains.

Seul le ; est considéré comme une fin d’instruction pour le langage.

Implémentation : Résultat de 1l'action d’'implémenter, c'est-a-dire le
fait d’'écrire du code. Un développeur implémente des solutions pour
répondre a des besoins. Une méthode contient une implémentation
répondant a un besoin spécifique.

Middleware (Intergiciel) : Systeme qui se positionne entre des
applications ou des logiciels. En passant une commande sur Amazon, on
peut dire qu’Amazon se positionne en tant que “middleware” entre vous
et le magasin qui vend le produit désiré.

Overflow (Dépassement) : Situation problématique qui survient
lorsqu’un dépassement de capacité (de “taille”) est rencontré.

En Java, le résultat de 1'opération arithmétique 56 * 3 (= 150)
générerait un dépassement (Overflow) s’il était affecté a une variable
de type byte, car ce type ne peut recevoir que les valeurs comprises
dans 1’'intervalle allant de -128 jusqu'a +127.

Parallélisme : Exécution de plusieurs opérations en simultané, en
paralléle. Répartir le travail dans une équipe revient a paralléliser
les taches a accomplir pour arriver plus rapidement au but.

Récursion (Récursivité) : Technique de programmation ou une fonction
s'appelle elle-méme. C’est une logique qui s’apparente a une boucle:
1’exécution d’un bloc de code est répétée tant qu’'une condition n’est
pas remplie. Souvent utilisée pour parcourir un arbre d’information,
permettant ainsi de ne pas avoir a connaitre son étendue a 1’avance.

134

https://www.jiraws.com
https://www.jiraws.com

'Y

Core

Master Guide

Formats de Fichiers [B
[File Formats]

.java (Java) : Extension pour les fichiers contenant le code source
d’'un programme écrit en langage Java. C'est le format de base avec
lequel tout développeur Java travaille quotidiennement.

.class (Classe) : Extension pour les fichiers bytecode Java générés
par le compilateur (compilation) a partir des fichiers .java. Le
bytecode est une forme intermédiaire du code, prét a étre exécuté par
la Machine Virtuelle Java (JVM).

.jar (Java ARchive) : Format d'archive utilisé pour distribuer un
ensemble de fichiers Java comme une seule unité d'application ou de
bibliothéque. Un fichier .jar peut étre intégré a un projet en tant
que bibliothéque externe, ou étre exécuté comme une application en
utilisant le JRE via une ligne de commande.

.properties (Properties) : Format pour les fichiers contenant des
propriétés utilisées pour configurer des applications Java.

Ils stockent des paires clé-valeur (comme une Map) qui peuvent étre
chargées dans 1'application au moment de 1'exécution.

.xml (XML) : “eXtensible Markup Language” est un langage de balisage
congu pour stocker et transporter des données. Développé et
recommandé comme un standard par le World Wide Web Consortium (W3C) a
la fin des années 1990, le XML a été congu pour étre a la fois
humainement lisible et facilement traité par les machines.

.json (JSON) : “JavaScript Object Notation”, un format de données
utilisé pour le stockage et le transfert d'informations structurées
entre des systémes distincts. A 1'origine, le format JSON a été concu
pour faciliter le transfert de données entre le serveur et le
navigateur web dans des applications basées sur JavaScript.
L’efficacité et la praticité de ce format ont démocratisé son
utilisation, allant méme jusqu’'a son intégration dans des cas d’usages
ou le langage JavaScript n’est pas impliqué.

135

https://www.jiraws.com
https://www.jiraws.com

Core

Master Guide

Version 1.0.0

Date de publication

Change Log

o Premiére version du document - Intégration de la majorité

Historique des Versions
[Version History]

Mars 2024

des éléments en lien avec la programmation Java.

Version 1.8.6

Date de publication

Adaptation de la colorimétrie pour la publication du

: Septembre 20624

guide au format papier (disponible sur Amazon).

Ajout d’un sommaire alphabétique détaillé pour
simplifier la navigation dans le document.

Correction d'une erreur sur la boucle while.

code
code
code
code
code

sur
sur
sur
sur
sur

la
le
la
la
la

réflexion (reflection).
mot-clé synchronized.

méthode Stream.distinct().

méthode Map.entrySet().
méthode

Collection.contains(E element).

Adaptation du mode d’emploi pour la version papier.
Utilisation de la classe ArraylList au lieu de la

classe LinkedList dans les exemples de codes ou son

usage n'était pas nécessaire.

Corrections de fautes d’'orthographe et de grammaire.

Améliorations de certaines définitions.

Améliorations de certaines tournures de phrase.

Change Log
o Majeur:
| |
| |
| |
m Correction du
m Correction du
m Correction du
m Correction du
m Correction du
o Mineur:
| |
| |
| |
| |
| |
| |

Améliorations de certaines traductions.

136

https://www.jiraws.com
https://www.jiraws.com

