
VUE EN COUCHES (LAYER VIEW)

VUE EN NIVEAUX (TIER VIEW)
1

STRUCTURATION DES APPLICATIONS

 La structuration du système peut être vue sous
différents angles, selon que l’on considère :
 le découpage « logique » hors de tout contexte d’exécution

(machines, OS et réseaux)

 le découpage « physique » qui prend en compte le contexte
d’exécution

 L’architecte structure le système selon plusieurs «
vues » :
 Vue en couches (Layer View) : vue « logique » montrant

le découpage des fonctions de l’application
 elle est indépendante des considérations physiques

 la littérature propose des modèles standards de structuration
qui couvrent les types classiques d’applications

 le modèle de référence est le modèle à 5 couches qui s’applique
aux applications munies d’une interface graphique manipulant
des données persistantes

 Vue en niveaux (Tier View) : vue « physique » de la
structuration de l’application

2

STRUCTURATION DES APPLICATIONS EN

COUCHE (SUITE)

 Chaque couche a ses propres responsabilités et utilise
la couche située en dessous d’elle

 En fonction du projet, les architectes enrichissent et
élaguent le modèle. La structuration est alors guidée
par les contraintes exprimées et existantes

Couche Présentation

Couche Coordination

Couche Services

Couche Domaine

Couche Persistance

3

 La couche Présentation gère et assure l'affichage
de l'interface graphique utilisateur ou les
Interfaces Homme-Machine (IHM : fenêtres,
pages, composants graphiques...)

 Cette couche intègre principalement :

 la gestion du domaine visuel

 l'interaction avec les utilisateurs

 l'interception des événements utilisateurs et l'appel à
la couche Contrôleur

 la gestion du multi canal (web, voix, mobile, fax)

 les services de portail (agrégation d’IHM, bouquets de
services)

 les services d’impression (impressions PDF, gestion
de templates…)

4

 On distingue trois catégories d'IHM pour les
applications interactives :

 Client léger : Dans ce modèle, aucun déploiement
n'est réalisé sur le poste client à l'exception d'un
navigateur Web. Les différents écrans de l'application
sont générés en temps réel côté serveur et
téléchargés par le poste client

 Client lourd :Dans ce modèle, l'ensemble des écrans
de l'application sont stockés ou générés sur le poste
client et doivent avoir été déployés sur celui-ci
préalablement à l'exécution. Ce type de client
n'impose à priori pas de restriction sur le contenu et
l'ergonomie des écrans. En règle générale, une
complexité croissante va de pair avec une taille
croissante de l'application à télécharger 5

 Client riche (Smart Client) :Ce modèle constitue un
compromis entre le client léger et le client lourd. Il présente
une ergonomie comparable à celle d'un client lourd tout en
limitant les problématiques de déploiement inhérentes à ce
dernier. Outils: Adobe Flex, Microsoft Silverlight, Google Web
Toolkit qui permettent d’exécuter directement le code dans le
navigateur

 Adobe Flex/Flash permet la création de graphiques
vectoriels et de bitmap animés par un langage script
appelé ActionScript, et la diffusion de flux (stream) bi-
directionnels audio et vidéo.

 Silverlight est un plugin pour navigateur Web multiplate-
forme (Windows et Mac OS, Linux via le projet Moonlight),
qui permet de développer des applications Web riches dans
un moteur de rendu vectoriel. Il fonctionne de façon
similaire à Adobe Flash dont il se veut une alternative.
Techniquement, Silverlight est l’équivalent de la CLR de
Microsoft mais pour les navigateurs Web. Elle permet aux
développeurs d’utiliser des outils de développement et les
langages Microsoft .NET en place et lieu de JavaScript .

6

http://fr.wikipedia.org/wiki/Microsoft_.NET

 La couche Coordination/Contrôleur gère :

 le contrôle de la cinématique des écrans

 l’invocation des appels de services

 les erreurs et les exceptions qui peuvent être levées

 les sessions / espace de travail utilisateur

 les habilitations et les droits d’accès

 L’architecture applicative de gestion des

interactions utilisateur est généralement mise en

œuvre autour du modèle de conception MVC

(Modèle-Vue-Contrôleur)

7

 La couche Services correspond aux traitements

qu’effectue l’application.

 Cette couche doit :

 implémenter la logique métier

 gérer la sécurité applicative

 gérer les transactions étendues (processus, compensation)

 gérer l’intégrité transactionnelle (transactions locales et

distribuées)

 gérer les appels aux objets métiers de la couche Domaine

 Elle gère les services métiers qui enchaînent des

règles métiers (processus métier) et des appels à la

couche Domaine

 Exemple : virement de compte à compte 8

NOTION SUR TRANSACTION

 Une transaction est une suite d'opérations effectuées comme une seule unité logique de travail. Une unité
logique de travail doit posséder quatre propriétés appelées propriétés ACID (Atomicité, Cohérence, Isolation
et Durabilité), pour être considérée comme une transaction :
 Atomicité Une transaction doit être une unité de travail indivisible ; soit toutes les modifications de données

sont effectuées, soit aucune ne l'est.

 Cohérence Lorsqu'elle est terminée, une transaction doit laisser les données dans un état cohérent. Dans une
base de données relationnelle, toutes les règles doivent être appliquées aux modifications apportées par la
transaction, afin de conserver l'intégrité de toutes les données.

 Isolement Les modifications effectuées par des transactions concurrentes doivent être isolées transaction par
transaction. Une transaction reconnaît les données dans l'état où elles se trouvaient avant d'être modifiées par
une transaction simultanée, ou les reconnaît une fois que la deuxième transaction est terminée, mais ne
reconnaît jamais un état intermédiaire. Cette propriété est nommée mise en série, car elle permet de recharger
les données de départ et de répéter une suite de transactions dont le résultat sur les données sera identique à
celui des transactions d'origine.

 Durabilité Lorsqu'une transaction est terminée, ses effets sur le système sont permanents. Les modifications
sont conservées même en cas de défaillance du système.

 Traitement transactionnel: La technologie garantissant un échange équilibré et prévisible s'appelle le
traitement transactionnel. Les transactions garantissent que les ressources orientées données ne font pas
l'objet d'une mise à jour définitive tant que toutes les opérations de l'unité transactionnelle n'ont pas abouti.
Grâce à la combinaison d'un jeu d'opérations connexes dans une unité qui a entièrement réussi ou
entièrement échoué, vous pouvez simplifier la récupération des erreurs et accroître la fiabilité de votre
application.

 Les systèmes de traitement transactionnel sont constitués de matériel et de logiciel informatiques
hébergeant une application orientée transaction qui procède aux transactions habituelles nécessaires au
traitement des affaires. Les systèmes qui gèrent la saisie de bons de commande, les réservations aériennes,
les salaires, les dossiers du personnel, la fabrication et l'expédition en sont des exemples.

 Les transactions distribuées sont réparties sur plusieurs serveurs nommés gestionnaires de ressources. La
gestion de la transaction doit être coordonnée entre les gestionnaires de ressources par un composant du
serveur nommé gestionnaire de transactions.

9

 La couche Domaine\Métier gère l'intégrité du modèle « métiers ». Cette

couche intègre principalement:

 la gestion des règles métiers « élémentaires »

 la fourniture des moyens d'accès à l'information (SGBDR, Mainframe...)

 le respect des propriétés transactionnelles de la couche persistance

 La couche Domaine recense les objets métiers manipulées par

l’application

 La couche Domaine est concentrée sur le métier de l’entreprise, commun

à toutes les applications

 Elle contient les Objets Métier qui implémentent le modèle métier. Ils offrent à

la couche Services une abstraction pour la manipulation unitaire ou multiple des
occurrences de données, ainsi que la mise en œuvre des règles de gestion
associées.

 Exemple bancaire : l’opération de virement de compte à compte

 l’opération de virement de compte à compte est un élément de la couche Services

 le compte bancaire et le client et leurs règles de gestion respectives, se situent dans la

couche Domaine.

10

 La couche Persistance intègre principalement :
 la persistance complète du Système d'Informations (données

structurées ou non structurées, gérées entre autres via un SGBDR,
annuaire LDAP, transaction CICS, ...)

 la fourniture des services de stockage des données, moteurs
relationnels, bases objets, bases XML…

 la création, la modification, la suppression d'occurrences des objets
métiers

 Elle contient un niveau d’abstraction de données les DAO (Data
Access Object) qui prennent en charge l'accès à la source de
données (SGBDR, fichiers XML, …).

 La couche Persistance offre les fonctionnalités de base qui
permettent :
 de créer, rechercher, modifier et supprimer des composants objets

métiers dans le respect des propriétés transactionnelles classiques

 d’utiliser le mécanisme de projection objet vers relationnel (mapping
Objet / Relationnel) qui consiste en la transformation de la
représentation des données en une représentation objet

11

SERVICES ENTRE COUCHE

12

La sécurité n’est pas une couche isolée, mais transverse aux autres couches:

 authentification des utilisateurs et contrôle des habilitations au niveau des
services IHM, sécurisation des traitements (authentification, habilitations
grosse maille et habilitations fines…)

 sécurisation des échanges, sécurisation des données…

Couche Sécurité

Services Techniques (Core Services)

COUCHE TRANSVERSE

Indépendamment des fonctionnalités des applications et de leur découpage en couches logicielles, on
retrouve des composants et services de base communs (Core Services) et transverses à l’ensemble des
couches :
• gestion des traces
• statistiques et logs
• gestion des erreurs
• gestion des propriétés de configuration
• gestion des fichiers de messages (internationalisation, messages d’erreurs)
• monitoring…

13

COUCHE SUPPLÉMENTAIRE

 Les architectes peuvent être amenés à effectuer des
découpages plus fins lorsque les contraintes deviennent plus
industrielles

 Un tel découpage s’explique par :
 La séparation des traitements dans une couche Service a pour objectif

de permettre leur réutilisation entre des processus « automatiques »
(arrivée de messages en provenance de systèmes externes) et des
opérations manuelles effectuées via les IHMs

 Une couche Domaine est pertinente dans le cas où les traitements à
effectuer sont nombreux, portent sur des entités métiers identifiées,
récurrentes et ont une importante durée de vie

 Le recours à une couche Echanges (comprenant les couches
Connectivité, Transformation et Routage) permet d’intégrer
des sources d’informations multiples et hétérogènes, en les
transformant en un ensemble plus réduit de formats pivots pour les
router vers les traitements adéquats. Elle propose des services
d’échanges entre traitements (échanges synchrones, asynchrones),
entre système de persistance (synchronisation de référentiels, ETL,
...), services de garantie de livraison de message, Message Broker
(Transformation, Routage, DataFlow), services de gestion de
transactions étendues (processus, compensation) 14

MVC

15

C’est un ensemble de modèles:

▪ Modèle utilise l’ Observateur afin de garder les vues
à jour par rapport aux derniers changements d'état.

▪ La vue et le contrôleur mettre en œuvre le pattern
Stratégie. Le contrôleur a le comportement de la vue
et peut être facilement échangé avec un autre
contrôleur si l’on veut un comportement différent.

▪ La Vue utilise aussi un modèle interne pour gérer
les boutons des fenêtres et des d'autres composants
de l'écran: le Pattern Composite.

▪ Exemple implémentation: http://baptiste-
wicht.developpez.com/tutoriels/conception/mvc/#LIII

http://baptiste-wicht.developpez.com/tutoriels/conception/mvc/
http://baptiste-wicht.developpez.com/tutoriels/conception/mvc/

VUE EN NIVEAUX (TIER VIEW)

 La vue en niveaux (la tier view) donne une vision plus
« physique » de la structuration de l’application. Les
niveaux (ou tiers) peuvent être répartis physiquement
sur différents composants matériels.

 On identifie un changement de « niveau » dès qu’un
module logiciel doit passer par un intermédiaire de
communication (middleware) pour en invoquer un
autre. Si l’utilisation du middleware est en général
transparente pour les développeurs, elle n’est pas
sans impact sur l’architecture. L’architecte doit donc
maîtriser les caractéristiques (client/serveur,
publication/abonnement, sécurité, support du
transactionnel, …) et en justifier l’usage.

 Des modèles standards de répartition de niveaux ont
été définis dans les projets par l’industrie au fur et à
mesure de l’évolution des capacités matérielles et des
besoins

16

1 TIERS

 Le modèle à 1 niveau (ou tiers) correspond à un

executable dans lequel s’exécutent toutes les

couches, de la présentation à la persistance.

 C’est l’exemple de l’application utilisée en

monoposte ou sur un réseau de serveurs de

fichiers, ainsi que de l’application sur système

central.

 Les données sont stockées sur un fichier local ou

partagées sur un serveur de fichier

17

2 TIERS

 Le modèle à 2 niveaux (ou tiers), encore appelé « client/serveur
première génération », repose sur l’utilisation de moteurs de bases
de données relationnelles.

 Ces moteurs permettent de distribuer la gestion de la persistance
sur un serveur ce qui permet de mieux répondre au besoin d’accès
concurrents et de supporter d’importants volumes, de gagner en
flexibilité et de se passer des onéreux systèmes centraux

 L’application d’entreprise peut ainsi être accédée depuis un
ordinateur personnel avec des standards de présentation moderne

18

3 TIERS CLIENT SERVEUR D’OBJETS

19

1 TIERS WEB STATIQUE

20

3 TIERS WEB DYNAMIQUE

21

4 TIERS WEB DYNAMIQUE

22

N TIERS WEB DYNAMIQUE DANS JEE

Présentation Services Domaine Persistance

Tiers

Client

Coordination

Tiers Web Tiers EJB Tiers Base de

données

Navigateu

r Web

Serveur
Web

Contenaire

Web
Contenaire EJB

SGBD

HTTP RMI JDBC

23

N TIER DANS DOT.NET

24

L'ARCHITECTURE ORIENTÉE OBJETS (OOA)

 Dans une architecture orientée manipulation d’objets, on remarque tout de
suite le nombre de liens entre la couche Coordination et les objets métiers de la
couche Domaine.

 Le code client doit traiter directement avec le modèle objet de la couche
Domaine, ce qui a pour conséquence de lier celle-ci très fortement à un modèle
spécifique et requiert un nombre d'appels important entre les deux couches.

 La multiplication des appels entre couches pose problème lors de la mise à
disposition à distance des objets métiers. De plus le nombre d'objets à
manipuler réduit l'indépendance entre couches et complexifie la prise en main
de la couche métier

Présentation Domaine PersistanceCoordinat
ion

Objet
métier

Objet
métier

Objet
métier

Objet
métier

Objet
métier

Objet
métier

Objet
métier

Objet
métier

Objet
métier 25

L’ARCHITECTURE ORIENTÉE SERVICES

(SOA)

 L’architecture SOA consiste à traiter toute application du
système d’information comme un fournisseur de services. Et
ces services doivent être réutilisables.

 Le service est l'unité atomique d'une SOA. Une application est
un ensemble de services qui dialoguent entre eux par des
messages.

 Le couplage entre services est un couplage faible et les
communications peuvent être synchrones ou asynchrones.

 Le service peut :
 être codé dans n'importe quel langage

 s'exécuter sur n'importe quelle plate-forme (matérielle et logicielle).

 Le service doit :
 offrir un ensemble d'opérations dont les interfaces sont publiées ;

 être autonome (disposer de toutes les informations nécessaires à son
exécution : pas de notion d'état) ;

 respecter un ensemble de contrats (règles de fonctionnement),

 correspondre aux processus métier et fonctions mutualisables au
niveau de l'entreprise afin d'aligner l'informatique aux changements
des décisions stratégiques et tactiques.

26

L’ARCHITECTURE ORIENTÉE SERVICES

 Pour une architecture SOA, un niveau supplémentaire est
introduit sous la forme de la couche Services.

 La couche Coordination ne manipule plus directement les
objets métiers, mais passe par des appels de services.

 Les services agissent comme des « boites noires » faisant
abstraction de la complexité du modèle objet, présentant un
ensemble de fonctionnalités restreints et permettant de
réduire les échanges entre les couches.

Présentation Services Domaine PersistanceCoordi
nation

Objet
métie

r

Objet
métie

r

Objet
métie

r

Objet
métie

r

Objet
métie

r Objet
métie

r

Service

Service
27

L’ARCHITECTURE ORIENTÉE SERVICES

 Un service doit pouvoir être utilisé par exemple pour

un traitement batch ou encore pour un traitement TP

 TP (Transaction Processing): il s’agit d’ un traitement qui

s'effectue en transactionnel, c'est-à-dire en temps réel

(synchrone).

 Batch: il s’agit d’ un traitement qui s'effectue par lots, en

réponse différée (asynchrone).

 Quel implémentation?

 Lorsque les couches se trouvent sur des machines

physiquement distinctes, des mécanismes tels que le

remoting ou les Services Web peuvent être mis en œuvre.

 Lorsque les couches d’une application se trouvent toutes

sur la même machine, il convient d’optimiser la

performance en privilégiant des appels directs entre les

couches
28

L’ARCHITECTURE ORIENTÉE SERVICES

 Généralement, une architecture SOA peut être

construire sans utiliser XML ni les services Web,

mais avec des formats de type CVS, ou des

technologies comme Corba ou COM/DCOM, mais

XML offre certainement une plus grande

ouverture.

29

WEB SERVICE

 Un service web est un programme informatique

permettant la communication et l'échange de

données entre applications et systèmes

hétérogènes dans des environnements distribués:

il permet aux applications de dialoguer à distance

via Internet indépendamment des plates-formes

et des langages sur lesquelles elles reposent.

30

WEB SERVICE : WS

31

WEB SERVICE WS: LES ACTEURS

Sur un serveur, le Service Registry est

l’annuaire des services publiés par les

providers (UDDI)

Sur le serveur, le Service Provider:

application s'exécutant sur un serveur et

comportant un module logiciel accessible

en XML

Sur le client, le Service Requester:

application cliente se liant à un service et

invoquant ses fonctions par des messages

XML (REST, XML-RPC,SOAP)
32

WEB SERVICE WS

 WSDL (Web Services Description Language) donne la

description au format XML des Web Services en

précisant les méthodes pouvant être invoquées, leur

signature et le point d'accès (URL, port, etc..).

 UDDI (Universal Description, Discovery and

Integration) normalise une solution d'annuaire

distribué de Web Services, permettant à la fois la

publication et l'exploration. UDDI se comporte lui-

même comme un Web service dont les méthodes sont

appelées via le protocole SOAP. Il s’agit d’un annuaire

permettant d’enregistrer de rechercher des service

web.

 SOAP (Simple Object Access Protocol) : Protocole de

communication en service Web par échange de

message XML.
33

WEB SERVICE WS: SOAP

34

WEB SERVICE WS: STRUCTURE D’UN

MESSAGE SOAP

35

Signature de la Méthode

Int doubleAnInteger (int numberToDouble);

Requête

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:doubleAnInteger xmlns:ns1="urn:MySoapServices">

<param1 xsi:type="xsd:int">123</param1>

</ns1:doubleAnInteger>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

36

Réponse
<?xml version="1.0" encoding="UTF-8" ?> <SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:doubleAnIntegerResponse xmlns:ns1="urn:MySoapServices" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:int">246</return>

</ns1:doubleAnIntegerResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

37

WEB SERVICE REST (REPRESENTATION

STATE TRANSFER)

 La consommation d’un WebService REST revient

à appeler une simple URL en HTTP.

 Chaque ‘méthode’ ou ‘service’ est attaché à une

URL

 Le serveur renvoie sa réponse, la plupart du

temps en XML
38

Client

Calculateur
d’Itinéraire

ws.ct-goat

HTTP

XML

WEB SERVICE REST (REPRESENTATION

STATE TRANSFER)

 Exemple : Récupération des

Informations d’une commune par

une requête http en mode GET

39

	Diapositive 1 Vue en couches (Layer View) Vue en niveaux (Tier View)
	Diapositive 2 Structuration des applications
	Diapositive 3 Structuration des applications EN COUCHE (Suite)
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9 Notion sur transaction
	Diapositive 10
	Diapositive 11
	Diapositive 12 Services entre couche
	Diapositive 13 Couche transverse
	Diapositive 14 Couche supplémentaire
	Diapositive 15 MVC
	Diapositive 16 Vue en niveaux (Tier View)
	Diapositive 17 1 tiers
	Diapositive 18 2 tiers
	Diapositive 19 3 TIERS Client Serveur d’objets
	Diapositive 20 1 tiers web statique
	Diapositive 21 3 tiers web dynamique
	Diapositive 22 4 tiers web dynamique
	Diapositive 23 N tiers web dynamique dans JEE
	Diapositive 24 N TIER dans Dot.Net
	Diapositive 25 L'architecture Orientée Objets (OOA)
	Diapositive 26 L’architecture Orientée Services (SOA)
	Diapositive 27 L’architecture Orientée Services
	Diapositive 28 L’architecture Orientée Services
	Diapositive 29 L’architecture Orientée Services
	Diapositive 30 Web service
	Diapositive 31 Web service : WS
	Diapositive 32 Web service WS: les acteurs
	Diapositive 33 Web service WS
	Diapositive 34 Web service WS: SOAP
	Diapositive 35 Web service WS: Structure d’un message SOAP
	Diapositive 36
	Diapositive 37
	Diapositive 38 Web service REST (Representation State Transfer)
	Diapositive 39 Web service REST (Representation State Transfer)

