VUE EN COUCHES (LAYER VIEW)
@ VUE EN NIVEAUX (TIER VIEW)

STRUCTURATION DES APPLICATIONS

La structuration du systeme peut etre vue sous
différents angles, selon que 'on considere :

le découpage « logique » hors de tout contexte d’exécution
(machines, OS et réseaux)

le decoupage « physique » qui prend en compte le contexte
d’exécution

L’architecte structure le systeme selon plusieurs «
vues » .
Vue en couches (Layer View) : vue « logique » montrant
le découpage des fonctions de I'application
elle est indépendante des considérations physiques

la littérature propose des modeles standards de structuration
qui couvrent les types classiques d’applications

le modele de référence est le modele a 5 couches qui s’applique
aux applications munies d’'une interface graphique manipulant
des données persistantes

Vue en niveaux (Tier View) : vue « physique » de la
structuration de I'application

STRUCTURATION DES APPLICATIONS EN
COUCHE (SUITE)

Chaque couche a ses propres responsabilités et utilise
la couche située en dessous d’elle

En fonction du projet, les architectes enrichissent et
elaguent le modele. La structuration est alors guidée
par les contraintes exprimées et existantes

La couche Présentation gere et assure l'affichage
de l'interface graphique utilisateur ou les
Interfaces Homme-Machine (IHM : fenétres,
pages, composants graphiques...)
Cette couche integre principalement :

la gestion du domaine visuel

I'iInteraction avec les utilisateurs

I'iInterception des événements utilisateurs et I'appel a
la couche Controleur

la gestion du multi canal (web, voix, mobile, fax)

les services de portail (agrégation d’IHM, bouquets de
services)

les services d'impression (impressions PDF, gestion
de templates...)

On distingue trois catégories d'IHM pour les
applications interactives :

Client léger : Dans ce modele, aucun déploiement
n'est réalisé sur le poste client a 1'exception d'un
navigateur Web. Les différents écrans de l'application
sont générés en temps réel coté serveur et
téléchargés par le poste client

Client lourd :Dans ce modeéle, 'ensemble des écrans
de l'application sont stockés ou générés sur le poste
client et doivent avoir été déployés sur celui-ci
préalablement a 1'exécution. Ce type de client
n'impose a priori pas de restriction sur le contenu et
I'ergonomie des écrans. En regle générale, une
complexité croissante va de pair avec une taille
croissante de l'application a télécharger

Client riche (Smart Client) :Ce modele constitue un
compromis entre le client léger et le client lourd. Il présente
une ergonomie comparable a celle d'un client lourd tout en
limitant les problématiques de déploiement inhérentes a ce
dernier. Outils: Adobe Flex, Microsoft Silverlight, Google Web
Toolkit qui permettent d’exécuter directement le code dans le
navigateur

Adobe Flex/Flash permet la création de graphiques
vectoriels et de bitmap animés par un langage script

appelé ActionScript, et la diffusion de flux (stream) bi-
directionnels audio et vidéo.

Silverlight est un plugin pour navigateur Web multiplate-
forme (Windows et Mac OS, Linux via le projet Moonlight),
qui permet de développer des applications Web riches dans
un moteur de rendu vectoriel. Il fonctionne de facon
similaire a Adobe Flash dont il se veut une alternative.
Techniquement, Silverlight est I’équivalent de la CLR de
Microsoft mais pour les navigateurs Web. Elle permet aux
développeurs d'utiliser des outils de développement et les
langages Microsoft .NET en place et lieu de JavaScript .

http://fr.wikipedia.org/wiki/Microsoft_.NET

La couche Coordination/Controéleur gere :
le controle de la cinématique des écrans
I'invocation des appels de services
les erreurs et les exceptions qui peuvent étre levées
les sessions / espace de travail utilisateur
les habilitations et les droits d’acces

L’architecture applicative de gestion des
Interactions utilisateur est généralement mise en
ceuvre autour du modele de conception MVC

(Modele-Vue-Controleur)

La couche Services correspond aux traitements
qu’effectue I'application.

Cette couche doit :
1mplémenter la logique métier
gérer la sécurité applicative
gérer les transactions étendues (processus, compensation)

gérer I'intégrité transactionnelle (transactions locales et
distribuées)

gérer les appels aux objets métiers de la couche Domaine
Elle gere les services métiers qui enchainent des
regles métiers (processus métier) et des appels a la
couche Domaine

Exemple : virement de compte a compte

NOTION SUR TRANSACTION

Une transaction est une suite d'opérations effectuées comme une seule unité logique de travail. Une unité
logique de travail doit posséder quatre propriétés appelées propriétés ACID (Atomicité, Cohérence, Isolation
et Durabilité), pour étre considérée comme une transaction :
Atomicité Une transaction doit étre une unité de travail indivisible ; soit toutes les modifications de données
sont effectuées, soit aucune ne 'est.
Cohérence Lorsqu'elle est terminée, une transaction doit laisser les données dans un état cohérent. Dans une
base de données relationnelle, toutes les régles doivent étre appliquées aux modifications apportées par la
transaction, afin de conserver l'intégrité de toutes les données.
Isolement Les modifications effectuées par des transactions concurrentes doivent étre isolées transaction par
transaction. Une transaction reconnait les données dans I'état ou elles se trouvaient avant d'étre modifiées par
une transaction simultanée, ou les reconnait une fois que la deuxiéme transaction est terminée, mais ne
reconnait jamais un état intermédiaire. Cette propriété est nommée mise en série, car elle permet de recharger
les données de départ et de répéter une suite de transactions dont le résultat sur les données sera identique a
celui des transactions d'origine.
Durabilité Lorsqu'une transaction est terminée, ses effets sur le systéme sont permanents. Les modifications
sont conservées méme en cas de défaillance du systeme.

Traitement transactionnel: La technologie garantissant un échange équilibré et prévisible s'appelle le
traitement transactionnel. Les transactions garantissent que les ressources orientées données ne font pas
l'objet d'une mise a jour définitive tant que toutes les opérations de 1'unité transactionnelle n'ont pas abouti.
Grace ala combinaison d'un jeu d'opérations connexes dans une unité qui a entierement réussi ou
entilé;rement échoué, vous pouvez simplifier la récupération des erreurs et accroitre la fiabilité de votre
application.

Les systemes de traitement transactionnel sont constitués de matériel et de logiciel informatiques
hébergeant une application orientée transaction qui procede aux transactions habituelles nécessaires au
traitement des affaires. Les systémes qui gerent la saisie de bons de commande, les réservations aériennes,
les salaires, les dossiers du personnel, la fabrication et 'expédition en sont des exemples.

Les transactions distribuées sont réparties sur plusieurs serveurs nommés gestionnaires de ressources. La
gestion de la transaction doit étre coordonnée entre les gestionnaires de ressources par un composant du
serveur nommé gestionnaire de transactions.

La couche Domaine\Métier gere l'intégrité du modele « métiers ». Cette
couche integre principalement:

la gestion des regles métiers « élémentaires»

la fourniture des moyens d'acces a I'information (SGBDR, Mainframe...)

le respect des propriétés transactionnelles de la couche persistance

La couche Domaine recense les objets métiers manipulées par
I’application

La couche Domaine est concentrée sur le métier de I'entreprise, commun
a toutes les applications

Elle contientles Objets Métier quiimplémentent le modele métier. Ils offrent a
la couche Services une abstraction pour la manipulation unitaire ou multiple des
occurrences de données, ainsi que la mise en ceuvre des regles de gestion
associées.

Exemple bancaire : 'opération de virement de compte a compte

l'opération de virement de compte a compte est un élément de la couche Services

le compte bancaire et le client et leurs regles de gestion respectives, se situent dans la
couche Domaine.

La couche Persistance integre principalement :

la persistance complete du Systeme d'Informations (données

structurées ou non structurées, gérées entre autres via un SGBDR,
annuaire LDAP, transaction CICS, ...

la fourniture des services de stockage des données, moteurs
relationnels, bases objets, bases XML...

la création, la modification, la suppression d'occurrences des objets
métiers
Elle contient un niveau d’abstraction de données les DAO (Data
Access Object) qui prennent en charge 1'acces a la source de

données (SGBDR, fichiers XML, ...).

La couche Persistance offre les fonctionnalités de base qui
permettent :

de créer, rechercher, modifier et supprimer des composants objets
métiers dans le respect des propriétés transactionnelles classiques

d’utiliser le mécanisme de projection objet vers relationnel (mapping
Objet / Relationnel) qui consiste en la transformation de la
représentation des données en une représentation objet

SERVICES ENTRE COUCHE

Services échangés entre couches.

Demande d’objet(s) ou de
. valeur, .
Demande d’objet(s)t ou ’ : . Objet a restaurer Appel Procédure
de valeur, validation Demande d'enregistrement ol sauvegarder stockée ou requéte

Présentation

Objet(s), valeur Objet(s), valeur] Tahble
ou Exception ou Exception Exception résultante,
objet*, valeurs

ou Exception

* dans le cas d'une base de données objets.

COUCHE TRANSVERSE

Couche Sécurité

La sécurité n’est pas une couche isolée, mais transverse aux autres couches:

o

authentification des utilisateurs et controle des habilitations au niveau des
services IHM, sécurisation des traitements (authentification, habilitations
grosse maille et habilitations fines...)

sécurisation des échanges, sécurisation des données...

Services Techniques (Core Services)

Indépendamment des fonctionnalités des applications et de leur découpage en couches logicielles, on
retrouve des composants et services de base communs (Core Services) et transverses a I’ensemble des
couches :

* gestion des traces

* statistiques et logs

* gestion des erreurs

* gestion des propriétés de configuration

* gestion des fichiers de messages (internationalisation, messages d’erreurs)

* monitoring...

COUCHE SUPPLEMENTAIRE

Les architectes peuvent étre amenés a effectuer des
découpages plus fins lorsque les contraintes deviennent plus
industrielles

Un tel découpage s’explique par :
La séparation des traitements dans une couche Service a pour objectif
de permettre leur réutilisation entre des processus « automatiques »
(arrivée de messages en provenance de systemes externes) et des
opérations manuelles effectuées via les IHMs

Une couche Domaine est pertinente dans le cas ou les traitements a
effectuer sont nombreux, portent sur des entités métiers identifiées,
récurrentes et ont une importante durée de vie

Le recours a une couche Echanges (comprenant les couches
Connectivité, Transformation et Routage) permet d’intégrer
des sources d’informations multiples et hétérogénes, en les
transformant en un ensemble plus réduit de formats pivots pour les
router vers les traitements adéquats. Elle propose des services
d’echanges entre traitements (échanges synchrones, asynchrones),
entre systeme de persistance (synchronisation de référentiels, ETL,

..), services de garantie de livraison de message, Message Broker
(Transformatlon Routage, DataFlow), services de gestion de
transactions étendues (processus, compensation)

MVC

C’est un ensemble de modéles:

Modeéle utilise I’ Observateur afin de garder les vues
a jour par rapport aux derniers changements d'état.

La vue et le controleur mettre en ceuvre le pattern

Stratégie. Le controleur a le comportement de la vue

et peut étre facilement échangé avec un autre
controleur si 'on veut un comportement différent.

La Vue utilise aussi un modele interne pour gérer

les boutons des fenétres et des d'autres composants

de I'écran: le Pattern Composite.
Exemple implémentation: http://baptiste-

wicht.developpez.com/tutoriels/conception/mve/#LIIIT

Model

Execute event

Update View
View

+hotify()

+Atachiin observer | View)
+Detachiin obsarver - View)

ConcreteModel

FaubjectState

-
-

e ——

Controller

Hlpdate()
HContextinterfacel)

subject
! ConcreteView

-obsarvarState
+Updata)

+hlgarithmInterface()

JAN

Update Model

ConcreteController

+SeiStatel)
+GeiStatel)

+AlgarithmInterface()

Figure 3: MVC

Strategy
Commller Upclate

User action
-— Update
Composite
Get changed 5tate. ————

Netify

Observer

http://baptiste-wicht.developpez.com/tutoriels/conception/mvc/
http://baptiste-wicht.developpez.com/tutoriels/conception/mvc/

VUE EN NIVEAUX (TIER VIEW)

La vue en niveaux (la tier view) donne une vision plus
« physique » de la structuration de 'application. Les
niveaux (ou tiers) peuvent étre répartis physiquement
sur différents composants matériels.

On 1dentifie un changement de « niveau » des qu’un
module logiciel doit passer par un intermeédiaire de
communication (middleware) pour en invoquer un
autre. S1 I'utilisation du middleware est en général
transparente pour les développeurs, elle n’est pas
sans impact sur 'architecture. I’architecte doit donc
malitriser les caractéristiques (client/serveur,
publication/abonnement, sécurité, support du
transactionnel, ...) et en justifier I'usage.

Des modeles standards de répartition de niveaux ont
été définis dans les projets par I'industrie au fur et a
mesure de I'évolution des capacités matérielles et des
besoins

1 TIERS

Le modele a 1 niveau (ou tiers) correspond a un
executable dans lequel s’exécutent toutes les
couches, de la présentation a la persistance.

C’est 'exemple de I'application utilisée en
monoposte ou sur un réseau de serveurs de
fichiers, ainsi que de 'application sur systeme
central.

Les données sont stockées sur un fichier local ou
partagées sur un serveur de fichier

2 TIERS

Le modele a 2 niveaux (ou tiers), encore appelé « client/serveur
premiere génération», repose sur 'utilisation de moteurs de bases
de données relationnelles.

Ces moteurs permettent de distribuer la gestion de la persistance
sur un serveur ce qui permet de mieux répondre au besoin d’acces
concurrents et de supporter dimportants volumes, de gagner en
flexibilité et de se passer des onéreux systémes centraux

L’application d’entreprise peut ainsi étre accédée depuis un
ordinateur personnel avec des standards de présentation moderne

Programme Serveurde données
Classesde la Couche
Présentation Appel procédures i

Procédures stockées
Fonctions

Classesde la Couche Métier

Classesd'acces aux

données

Table résultante
_ et/ou code retour

-

TCP/IP,Canaux nommeés

3 TIERS CLIENT SERVEUR D’OBJETS

Programme

Classes de la Couche
Présentation

Interface

Classes Remote Proxy

TCFIIP

Serveurd’objets

Classes Remote Objet

distant

Interface

Classes de la Couche
Metier

Classes d’acces aux

données

Appel méthodes ,
Objets échangés

TCP/IP,Canau}

Serveurde donneées

Base de données
Procédures stockées
Fonctions

nommes

Appel procédures, table résultante, code retour

Service

SqlServer

1 TIERS WEB STATIQUE

3 TIERS WEB DYNAMIQUE

Navigateur Serveur Web

Classes de la Couche
*| Présentation Aspx

Classes de la Couche

Serveurde données

Base de données
Procédures stockées
Fonctions

Métier
Classes de la Couche . -
. : Classes d’acces aux
Presentation HTML JS données
)
TCPIP TCP/IP,CanauX nommeés
Page Cliente, appel composant serveur Appel procedures, table résultante, code retour
Internet Explorer
P s SqlServer

FireFox

4 TIERS WEB DYNAMIQUE

Navigateur Serveur Web Serveur d'Objet Serveur de donneées

Classes de la Couche Classes de la Couche
¥ Présentation Aspx Métier Base de données

Procédures stockées

Classes d’accesaux Fonctions

données

Classes de la Couche
Présentation HTML JS

t

TCPIIP TCP/IF,Canauy nommeés
FPage Cliente, appel composant serveur Appel procedures, table résultante, code retour

Internet Explorer

- SqlServer
FireFox s .Net Remoting

N TIERS WEB DYNAMIQUE DANS JEE

(P

résentation

Tiers Tiers Web Tiers EJB
Client

Tiers Base de
données

Navigateu Serveur Contenaire

 Web Web Web Contenaire EJB SGBD

N TIER DANS DOT.NET

Couches

Architectures

Application
Winform

Winforms Contrdleur Objets métier Tables + PS
2 tiers Programme C# et VB.Net dit Client Serveur de données
3 tiers R A Programme sur le Serveur d'objets Net Remoting Serveur de donnees
Application
Webform

HTML JS ASP.Net
Objets métier Persistance Tables + PS

3 tiers Navigateur Site Web contenant les pages asp et les classes, Serveur de données
s'exécutant sur le Serveur Web

4 tiers
Navigateur Site Web contenant les pages asp et Webservice Serveur de données
contréleur(s)
4 tiers
intranet Navigateur Site Web contenant les pages asp et Serveur de données

. Programme sur le Serveur d'objets Net Remotin
contraleur(s) L -5 L

L'ARCHITECTURE ORIENTEE OBJETS (OOA)

o Dans une architecture orientée manipulation d’'objets, on remarque tout de
suite le nombre de liens entre la couche Coordination et les objets métiers de la
couche Domaine.

o Le code client doit traiter directement avec le modele objet de la couche
Domaine, ce qui a pour conséquence de lier celle-ci tres fortement a un modele
spe01f1que et requiert un nombre d'appels important entre les deux couches.

o La multiplication des appels entre couches pose probleme lors de la mise a
disposition a distance des objets métiers. De plus le nombre d'objets a
manipuler réduit I'indépendance entre couches et complexifie la prise en main
de la couche métier

(p

résentation

I’ARCHITECTURE ORIENTEE SERVICES
(SOA)

L’architecture SOA consiste a traiter toute application du
systeme d'information comme un fournisseur de services. Et
ces services doivent étre réutilisables.

Le service est I'unité atomique d'une SOA. Une application est
un ensemble de services qui dialoguent entre eux par des
messages.

Le couplage entre services est un couplage faible et les
communications peuvent étre synchrones ou asynchrones.

Le service peut :
étre codé dans n'importe quel langage
s'exécuter sur n'importe quelle plate-forme (matérielle et logicielle).

Le service doit :
offrir un ensemble d'opérations dont les interfaces sont publiées ;

étre autonome (disposer de toutes les informations nécessaires a son
exécution : pas de notion d'état) ;

respecter un ensemble de contrats (regles de fonctionnement),

correspondre aux processus métier et fonctions mutualisables au
niveau de l'entreprise afin d'aligner 1'informatique aux changements
des décisions stratégiques et tactiques.

I’ARCHITECTURE ORIENTEE SERVICES

o Pour une architecture SOA, un niveau supplémentaire est
introduit sous la forme de la couche Services.

o La couche Coordination ne manipule plus directement les
objets métiers, mais passe par des appels de services.

o Les services agissent comme des « boites noires » faisant
abstraction de la complexité du modele objet, présentant un
ensemble de fonctionnalités restreints et permettant de
réduire les échanges entre les couches.

4 .
/Présentation\ COOTdIY Services
nation
) sevice
~ Service
\ N I

[’ARCHITECTURE ORIENTEE SERVICES

Un service doit pouvoir étre utilisé par exemple pour
un traitement batch ou encore pour un traitement TP

TP (Transaction Processing): il s’agit d’ un traitement qui
s'effectue en transactionnel, c'est-a-dire en temps réel
(synchrone).

Batch: il s’agit d’ un traitement qui s'effectue par lots, en
réponse différée (asynchrone).

Quel implémentation?

Lorsque les couches se trouvent sur des machines
physiquement distinctes, des mécanismes tels que le
remoting ou les Services Web peuvent étre mis en ceuvre.

Lorsque les couches d'une application se trouvent toutes
sur la méme machine, i1l convient d’optimiser la
performance en privilégiant des appels directs entre les
couches

I’ARCHITECTURE ORIENTEE SERVICES

Généralement, une architecture SOA peut éetre
construire sans utiliser XML ni les services Web,
mais avec des formats de type CVS, ou des
technologies comme Corba ou COM/DCOM, mais
XML offre certainement une plus grande
ouverture.

WEB SERVICE

Un service web est un programme informatique
permettant la communication et 1'échange de
données entre applications et systemes
hétérogenes dans des environnements distribués:
1]l permet aux applications de dialoguer a distance
via Internet indépendamment des plates-formes
et des langages sur lesquelles elles reposent.

WEB SERVICE : WS

SOAP/XML

WEB SERVICE WS: LES ACTEURS

Sur un serveur, le Service Registry est
I’annuaire des services publiés par les

providers (UDDI)

Sur le serveur, le Service Provider:
application s'exécutant sur un serveur et
comportant un module logiciel accessible

en XML

Sur le client, le Service Requester:
application cliente se liant a un service et

invoquant ses fonctions par des messages
XML (REST, XML-RPC,SOAP)

WEB SERVICE WS

WSDL (Web Services Description Language) donne la
description au format XML des Web Services en
précisant les méthodes pouvant étre invoquées, leur
signature et le point d'acces (URL, port, etc..).

UDDI (Universal Description, Discovery and
Integration) normalise une solution d'annuaire
distribué de Web Services, permettant a la fois la
publication et l'exploration. UDDI se comporte lui-
meme comme un Web service dont les méthodes sont
appelées via le protocole SOAP. Il s’agit d’'un annuaire
permettant d’enregistrer de rechercher des service
web.

SOAP (Simple Object Access Protocol) : Protocole de
communication en service Web par échange de
message XML.

WEB SERVICE WS: SOAP

L

......

Procuration
d'interface

...

Messages
SOAP

HTTP

lllll

CLIENT

riny

.r"’lﬂ“‘lr-‘)
:';
Appel Translateur
SOAP
ot ===
dh
- RPC
Réponse local
Serveur
d'application
"a__
~.
SERVEUR

WEB SERVICE WS: STRUCTURE D’'UN
MESSAGE SOAP

Protocol Headers ——— | Protocole de transport
Ex HTTP

> Definit le document XML

comme un message
chnD

SOAP Header TTr—— Optionnelle - Stockage des informations spécifiques a
™ |a transaction (éléments optionnels : actor,
MustUnderstand, encoding..)

SOAP Envelope

SOAP Body S
Contenant des données a
transporter.

SOAP Fault 1
T~ T ——1—®» Gestion derreurs

Signature de la Méthode
Int doubleAnInteger (int numberToDouble);

Requéte
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/ XMLSchema-instance"
xmlns:xsd="http://www.w3.0org/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:doubleAnInteger xmlns:ns1="urn:MySoapServices">
<paraml xsi:type="xsd:int">123</param1>
</nsl:doubleAnInteger>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Réponse

<?xml version="1.0" encoding="UTF-8" 7> <SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema'">

<SOAP-ENV:Body>

<nsl:doubleAnIntegerResponse xmlns:ns1="urn:MySoapServices" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:int">246</return>

</nsl:doubleAnIntegerResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

WEB SERVICE REST (REPRESENTATION
STATE TRANSFER)

Calculateur

d’Itinéraire

' ws.ct-goat

o La consommation d'un WebService REST revient
a appeler une simple URL en HTTP.

o Chaque ‘méthode’ ou ‘service’ est attaché a une
URL

o Le serveur renvoie sa réponse, la plupart du
temps en XML

WEB SERVICE REST (REPRESENTATION
STATE TRANSFER)

o Exemple : Récupération des
Informations d’'une commune par

une requéte http en mode GET
Requéte

http:/iws.ct-goat.com/getCityinfos.asp 7ulD=xxXxXXXXXXXXXxx&comlD=562

Réponse

<RETURN>
4448
<NUMBER> [numéro d’erreur)</NIMEER>
cDESCRIPTION> [description de 1l erreur)< /DESCRIPTION>
</ERROR>
o HESULT ™

CROACOUNT =1 < fROWCOUNT >

COoM T [Ih de la commume]<,/C0M TOo

M 'l > [nom da la n:mmum] COM_MA
«COM_COMINSER s [eode IHSEE de .'La cmunq] | COMTMS
<COM rld des points 4’ arréts princlp;ux dn la ::m.-numl-:.- SOM_COMIN
e SROHS>
e RS
/RESULT >
RETURN

	Diapositive 1 Vue en couches (Layer View) Vue en niveaux (Tier View)
	Diapositive 2 Structuration des applications
	Diapositive 3 Structuration des applications EN COUCHE (Suite)
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9 Notion sur transaction
	Diapositive 10
	Diapositive 11
	Diapositive 12 Services entre couche
	Diapositive 13 Couche transverse
	Diapositive 14 Couche supplémentaire
	Diapositive 15 MVC
	Diapositive 16 Vue en niveaux (Tier View)
	Diapositive 17 1 tiers
	Diapositive 18 2 tiers
	Diapositive 19 3 TIERS Client Serveur d’objets
	Diapositive 20 1 tiers web statique
	Diapositive 21 3 tiers web dynamique
	Diapositive 22 4 tiers web dynamique
	Diapositive 23 N tiers web dynamique dans JEE
	Diapositive 24 N TIER dans Dot.Net
	Diapositive 25 L'architecture Orientée Objets (OOA)
	Diapositive 26 L’architecture Orientée Services (SOA)
	Diapositive 27 L’architecture Orientée Services
	Diapositive 28 L’architecture Orientée Services
	Diapositive 29 L’architecture Orientée Services
	Diapositive 30 Web service
	Diapositive 31 Web service : WS
	Diapositive 32 Web service WS: les acteurs
	Diapositive 33 Web service WS
	Diapositive 34 Web service WS: SOAP
	Diapositive 35 Web service WS: Structure d’un message SOAP
	Diapositive 36
	Diapositive 37
	Diapositive 38 Web service REST (Representation State Transfer)
	Diapositive 39 Web service REST (Representation State Transfer)

