Conception et Développement Web e cnam

~

Grand Est

Apprentissage

La couche d’accés aux données

MODELE VUE CONTROLEUR

Le « Modele »

Contenu

Définition de la couche « Modeéle » du Pattern MVCcooi i e e e e s b eeee s
Structure d’une couche « MOAEIE » ClaSSIQUE.........uuiiiii it e e e e e e et e e e e e esabbreeeeeessssbeeeaaens
I o e 1] LTSRN
Les Classes d'aCCES AUX QONNEES.......uuiiiiiiiiciiieee e e ettt e e e e sttt e e e e e s st reeeeeessbteeaeesssabbeaeaeessasssaeaaeessssseeeeesesnnsseeeens
[T o =Y =T e [ol o1 V= 4o o SRR

(ol Y oo [N =T (U L<] o YU UURE

MD v1.0.1 26/10/2019

page1 | le cham

Définition de la couche « Modéle » du pattern MVC

La couche Modéle d’une architecture MVC est un ensemble de composants qui contient les données ainsi que de la
logique en rapport avec les données (validation, lecture et enregistrement). Il peut, dans sa forme la plus simple,
contenir uniquement une simple valeur, ou une structure de données plus complexe. Le Modele représente le
contexte métier dans lequel s'inscrit l'application. Par exemple, pour un site e-commerce, la couche Modéle
représentera les clients, les produits, les commandes etc...

En pratique, la couche modeéle d’'une architecture MVC est encapsulée au sein de la couche d’acces aux données d’une
application n-tiers.

Ses principaux composants sont :
- Les modeles, qui sont une représentation « objet » de la structure d’une base de données.

- Les classes d’acces aux données, qui contiennent la logique d’interaction avec la base de données représentée par
les modéles.

Model

Defines data structure
e.g. updates application to reflect

added item

Updates

e.0. list item to show added item Manipulates

Sends input from user

View > (Controller

Defines display (Ul) Contains control logic
e.g. user clicks ‘add to cart’ < e.g. receives update from view
Sometimes updates directly | then notifies model to “add item’

le cham
| Page 1

Page 2 | le cham

Structure d’'une couche « Modéle » classique

Les modeles

Les modeéles (Model) sont un ensemble de classes qui représentent généralement la structure d’une base de données.
Un modele contient les attributs caractérisant un objet métier et est généralement consommé par la Vue (View). Dans
le cas d’'une application couplée a une base de données relationnelle, un modele peut représenter la vue « objet »

d’une table.

Exemple d’un modele représentant un utilisateur :

<=rlass=>

User

-id :int

- username : string
- email: string

- password : string

Un modele est une classe dont les méthodes se limitent généralement au fonctionnement interne du modéle comme
la lecture ou la validation des données.

Dans notre modele User, on pourrait par exemple implémenter des accesseurs ainsi qu’une méthode pour vérifier la
correspondance d’un mot de passe fourni avec celui stocké.

<=rlass=>

User

-id :int

- username : siring
- email: string

- password : string

+ getld() : int

+ getUsername() : string

+ getEmail{) : string

+ PasswordVenfy(string) : bool

Vous I'avez bien compris, un modeéle est une représentation d’un objet métier et... juste une représentation.

Un modeéle ne doit en aucun cas interagir directement avec la base de données.

Ce role d’interaction avec un SGBD est confié aux classes d’acceés aux données.

e cham
| Page 2

Page3 | le cham

Les classes d’acces aux données

Les classes d’accés aux données (DAO « Data Access Object ») contiennent la logique d’interaction avec la base de
données et sont consommeées par les contrdleurs (couche de traitement).

Concretement, les classes d’acceés aux données contiennent les méthodes permettant d’interagir avec la base de
données. Elles sont divisées en 2 catégories :

- Les classes de connexion dont le réle est d’établir et de représenter une connexion vers une base de données.
- Les classes de requétes dont le réle sera d’interroger une base de données représentée par une classe de
connexion.

Les résultats des requétes seront stockés dans les modéles correspondant et seront renvoyés vers la Vue.

Les classes de connexion

Les classes de connexion représentent une connexion vers une base de données. Elles contiennent au minimum la
liaison vers la base de données.

Dans les applications Web, il est fréquent d’utiliser le patron de conception « Singleton » pour s’assurer que
I"application n’établit pas de multiples connexions a la base de données, ce qui pourrait nuire aux performances.

Le pattern Singleton garantit qu’une seule instance d’une classe n’est active a un instant T. Le constructeur d’une
classe Singleton est privé, I'instance unique est stockée dans un attribut statique privé et I’accés cette instance unique
se fait au moyen d’'une méthode statique publique nommée « getinstance() » par convention (mais il est possible de
la nommer comme bon vous semble).

SINGLETON PATTERN

Singleten

- instamce F—

T gL’lIIIF[LI'.'IL'U |,_|

if (instance == null}
mstance = new Singletoni)
refurn instance;

Le patron de conception Singleton ne fait pas I'unanimité au sein de la communauté des développeurs. De ce fait,
d’autres approches existent.

Par exemple, il est possible d’utiliser I'injection de dépendance. Dans ce cas, I'objet de connexion est stocké dans un
gestionnaire de connexion et est « injecté » dans le constructeur des classes de requétes. Cette approche est
légerement plus complexe a construire mais permet plus de souplesse lorsque I'application sera amenée a évoluer.

e cham
| Page 3

Page 4 | Iecnam

Les classes de requétes

Les classes de requétes sont les plus complexes a implémenter. Leur réle central impose une certaine rigueur
puisque qu’elles assurent le lien entre les différentes couches de I'application. Elles sont principalement
consommeées par les contréleurs. Leurs méthodes envoient des requétes a la base de données et retournent les
résultats dont le format dépendra du type de requétes envoyées.

- Lesrequétes de lecture renvoient un modéle (ou une collection de modeéles) représentant le résultat.
- Lesrequétes d’écriture renvoient le nombre d’enregistrements affectés ou, selon I'implémentation, un booléen

qui indiquera si I'opération a réussi.

Reprenons notre utilisateur et complétons le diagramme en y ajoutant une classe de connexion et la classe qui
gérera les requétes vers la base de données ol I’'ensemble des utilisateurs est stocké.

<<= glatic>>

DbConnection

-instance : DbConnection (static)
+ getinstance() : DbConnection (static)

1
=<<plggss> J
<] gege
User U
sers
-id :int
- username : string - connection : DbConnection
- email: string < .
. = + selectAll() : User]
- password : string + selectByld(int) : User
+ getld() : int + selectByMName(string) : User
+ getUsername() : string + insert{User) :lhml
+ getEmail() : string + update{User): bool
+ PasswordVerify(string) : bool + delete(User) : boal

La classe « DbConnection » représente la connexion a la base de données.

La classe « Users » contient une instance de la classe « DbConnection » et des méthodes permettant d’interagir avec
la base de données. Les méthodes de lecture retournent des instances de la classe « User ».

La classe « User » représente 1 utilisateur.

cnam-grandest.fr

le cham
Sl < | Page 4

https://www.cnam-grandest.fr/

